Patents by Inventor William David Duncan

William David Duncan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10086938
    Abstract: An unmanned aerial vehicle may be used to mark airborne material in a plume. The unmanned aerial vehicle may store a macroscopic and/or microscopic tracer material. A sensor and/or control unit may detect a substance of interest in a plume. The sensor may be configured to detect multiple different substances sharing a particular characteristic. The unmanned aerial vehicle may be piloted along a gradient of increasing concentration of the substance of interest. The tracer material may be ejected into the plume. The tracer material may be configured to react and/or interact with the substance of interest. The unmanned aerial vehicle may be piloted a predetermined distance from the plume after the tracer material has been ejected. Additional and/or different tracer material may be ejected into the plume if it is determined from measurements that ejecting additional tracer material would be beneficial.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: October 2, 2018
    Assignee: ELWHA LLC
    Inventors: Paul Duesterhoft, William David Duncan, Roderick A. Hyde, Jordin T. Kare, Eric C. Leuthardt, Tony S. Pan, Lowell L. Wood, Jr.
  • Publication number: 20180259963
    Abstract: Described embodiments include a system, method, and apparatus. A system includes package management system for operating a robotic vehicle configured to transport consumer items selected by a human shopper from a consumer shopping environment and placed in the robotic vehicle. The package management system includes circuitry for receiving data indicative of a transportation departure point accommodating a transfer of a consumer item from the robotic vehicle to a conveyance configured to transport the consumer item away from the consumer shopping environment. The package management system includes circuitry for routing the robotic vehicle to the departure point. In an embodiment, the package management system includes circuitry for managing a transfer of a consumer item acquired by the individual human shopper in the consumer shopping environment from the robotic vehicle to the conveyance at the departure point.
    Type: Application
    Filed: March 8, 2018
    Publication date: September 13, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Lowell L. Wood, JR.
  • Patent number: 10072503
    Abstract: A turbine blade includes a core element having a base portion, a tip portion, and an intermediate portion extending between the base portion and the tip portion. The intermediate portion includes a non-uniform cross-section and is a high-strength fiber material. The turbine blade further includes a shell disposed around the core element, and the volume between the core element and the shell forms a void.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: September 11, 2018
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, William David Duncan, Bran Ferren, William Gates, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, John Latham, Nathan P. Myhrvold, Stephen H. Salter, Clarence T. Tegreene, David B. Tuckerman, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10065739
    Abstract: An unmanned aerial vehicle may be used to monitor and/or track airborne material in a plume. The unmanned aerial vehicle may be configured to eject a tracer material into the plume. The unmanned aerial vehicle may include a sensor for detecting the tracer material. The sensor may detect the position, the velocity, the concentration, amount reacted, etc. of the tracer material. The unmanned aerial vehicle and/or a remote vehicle or facility may include an electromagnetic radiation emitter to irradiate the tracer material. The sensor may measure the interactions of the electromagnetic radiation with the tracer material. The unmanned aerial vehicle and/or a remote system may determine characteristics of the plume and/or a substance of interest based on measurements by the sensor.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 4, 2018
    Assignee: Elwha LLC
    Inventors: Paul Duesterhoft, William David Duncan, Roderick A. Hyde, Jordin T. Kare, Eric C. Leuthardt, Tony S. Pan, Lowell L. Wood, Jr.
  • Patent number: 10056219
    Abstract: Graphene grids are configured for applications in vacuum electronic devices. A multilayer graphene grid is configured as a filter for electrons in a specific energy range, in a field emission device or other vacuum electronic device. A graphene grid can be deformable responsive to an input to vary electric fields proximate to the grid. A mesh can be configured to support a graphene grid.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: August 21, 2018
    Assignee: Elwha LLC
    Inventors: William David Duncan, Roderick A. Hyde, Jordin T. Kare, Max N. Mankin, Tony S. Pan, Lowell L. Wood
  • Patent number: 10006994
    Abstract: A soil detection and planting apparatus. The apparatus includes a vehicle and a controller coupled to the vehicle. The apparatus further includes a planting device coupled to the vehicle, the planting device configured to plant seeds or plants into a soil material. The apparatus includes a ground penetrating radar sensor coupled to the vehicle. The ground penetrating radar soil sensor is configured to scan the soil material up to a designated depth beneath a surface of the soil material, wherein the ground penetrating radar soil sensor is further configured to provide a sensor feedback signal to the controller with respect to an intrinsic characteristic of the soil material. The controller is configured to instruct placement of a seed or a plant into the soil material based on the feedback signal.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: June 26, 2018
    Inventors: Alistair K. Chan, William David Duncan, Roderick A. Hyde, Lowell L. Wood, Jr.
  • Patent number: 9956106
    Abstract: A gastrointestinal device and methods of manufacturing said gastrointestinal device are described and include a flexible tubular structure including a layered wall, the flexible tubular structure including a plurality of at least one type of commensal microbe encased in the layered wall, the layered wall configured to allow an interaction between the plurality of the at least one type of commensal microbe and an ingested product within the flexible tubular structure, and a proximal end and a distal end, the proximal end and the distal end forming a flow conduit through the flexible tubular structure; and at least one anchor structure including one or more gastric wall-engaging components configured to engage a wall of the gastrointestinal tract of the subject.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: May 1, 2018
    Assignee: Elwha LLC
    Inventors: Mahalaxmi Gita Bangera, William David Duncan, Roderick A. Hyde, Wayne R. Kindsvogel, Elizabeth A. Sweeney
  • Patent number: 9949855
    Abstract: A gastrointestinal device and methods of manufacturing said gastrointestinal device are described and include a flexible tubular structure including a layered wall, the flexible tubular structure including at least one microbe-promoting agent encased in the layered wall, the microbe-promoting agent configured to promote at least one of attraction, colonization, and growth of at least one type of commensal microbe, and a proximal end and a distal end, the proximal end and the distal end forming a flow conduit through the flexible tubular structure; and at least one anchor structure including one or more gastric wall-engaging components configured to engage a wall of the gastrointestinal tract of the subject.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: April 24, 2018
    Assignee: Elwha LLC
    Inventors: Mahalaxmi Gita Bangera, William David Duncan, Roderick A. Hyde, Wayne R. Kindsvogel, Elizabeth A. Sweeney
  • Patent number: 9919797
    Abstract: A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: March 20, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 9921583
    Abstract: Described embodiments include a system, method, and apparatus. A system includes package management system for operating a robotic vehicle configured to transport consumer items selected by a human shopper from a consumer shopping environment and placed in the robotic vehicle. The package management system includes circuitry for receiving data indicative of a transportation departure point accommodating a transfer of a consumer item from the robotic vehicle to a conveyance configured to transport the consumer item away from the consumer shopping environment. The package management system includes circuitry for routing the robotic vehicle to the departure point. In an embodiment, the package management system includes circuitry for managing a transfer of a consumer item acquired by the individual human shopper in the consumer shopping environment from the robotic vehicle to the conveyance at the departure point.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: March 20, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Lowell L. Wood, Jr.
  • Patent number: 9915438
    Abstract: A system and associated methods of operation for regulating an environmental variable (such as ambient room temperature) within a target zone. The system includes a sensor system configured to monitor the target zone, detect one or more inhabitants present within the zone, and identify an alpha person from the one or more inhabitants. Once the alpha person is identified, a measurement sensor measures a skin parameter from the identified alpha person and generates a sensor signal communicating the measured skin parameter to an environmental control system. Upon receiving the sensor signal, the environmental control system regulates an environmental variable within the zone based on the measured skin parameter from the alpha person.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: March 13, 2018
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, William David Duncan, Eun Young Hwang, Roderick A. Hyde, Tony S. Pan, Clarence T. Tegreene, Victoria Y. H. Wood
  • Patent number: 9909774
    Abstract: A system and associated methods of operation for regulating an environmental variable (such as ambient room temperature) within a target zone. The system includes an occupancy sensor configured to monitor the target zone and determine a number of inhabitants present within the zone. The occupancy sensor generates an occupancy signal communicating the number of detected inhabitants to an environmental control system. Upon receiving the occupancy signal, the environmental control system regulates an environmental variable within the zone based on the number of inhabitants present in the zone.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: March 6, 2018
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, William David Duncan, Eun Young Hwang, Roderick A. Hyde, Tony S. Pan, Clarence T. Tegreene, Victoria Y. H. Wood
  • Patent number: 9902491
    Abstract: A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: February 27, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 9893026
    Abstract: Inter-substrate coupling and alignment using liquid droplets can include electrical and plasmon modalities. For example, a set of droplets can be placed on a bottom substrate. A top substrate can be placed upon the droplets, which uses the droplets to align the substrates. Using the droplets in a capacitive or plasmon coupling modality, information or power can be transferred between the substrates using the droplets.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: February 13, 2018
    Assignee: Elwha LLC
    Inventors: William David Duncan, Roderick A. Hyde, Jordin T. Kare, Thomas M. McWilliams, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 9887177
    Abstract: Inter-substrate coupling and alignment using liquid droplets can include electrical and plasmon modalities. For example, a set of droplets can be placed on a bottom substrate. A top substrate can be placed upon the droplets, which uses the droplets to align the substrates. Using the droplets in a capacitive or plasmon coupling modality, information or power can be transferred between the substrates using the droplets.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: February 6, 2018
    Assignee: Elwha LLC
    Inventors: William David Duncan, Roderick A. Hyde, Jordin T. Kare, Thomas M. McWilliams, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 9886941
    Abstract: A computationally implemented system and method that is designed to, but is not limited to: electronically conditioning one or more information signals accessed at least in part through one or more portions of a portable electronic device to be transmitted from one or more portable electronic device emitters through one or more modulated acoustic ultrasonic signals; and electronically governing for output of one or more beams of said one or more modulated acoustic ultrasonic signals for demodulation of said one or more modulated acoustic ultrasonic signals into one or more acoustic audio signals containing said one or more information signals at a first location spaced away from said portable electronic device and spaced away from a second location. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: February 6, 2018
    Assignee: Elwha LLC
    Inventors: Michael H. Baym, William David Duncan, Roderick A. Hyde, Edward K. Y. Jung, Richard T. Lord, Robert W. Lord, Nathan P. Myhrvold, Lowell L. Wood, Jr.
  • Patent number: 9878786
    Abstract: A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: January 30, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, TOny S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Thomas Allan Weaver, Lowell L. Wood, Jr.
  • Patent number: 9878787
    Abstract: A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: January 30, 2018
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Yaroslav A. Urzhumov, Thomas Allan Weaver, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20180016027
    Abstract: A system and method for payload management for a UAV/aircraft is disclosed. UAV/craft may be configured for a mission with aerodynamically-exposed payload to be delivered from originator to destination on a route in operating conditions. UAV/aircraft may provide an aerodynamic profile indicative of the expected aerodynamic performance in view of considerations such as flight characteristics and effects; a base aerodynamic profile without payload and a loaded aerodynamic profile with payload may be determined. The system and method may comprise estimation/determination and assessment/transaction of a freight charge for the mission based on aerodynamic profile and other considerations; freight charge may comprise a surcharge or penalty based on performance using unit reference points and factors/considerations. UAV/aircraft system can be configured and operated/managed to interface with the system; missions may be optimized based on freight charge or other considerations.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 18, 2018
    Inventors: JESSE R. CHEATHAM, III, WILLIAM DAVID DUNCAN, RODERICK A. HYDE, YAROSLAV A. URZHUMOV, LOWELL L. WOOD, JR.
  • Publication number: 20180018895
    Abstract: Described embodiments include a self-propelled vehicle, method, and system. The self-propelled vehicle includes an autonomous driving system configured to dynamically determine maneuvers operating the vehicle along a route in an automated mode without continuous input from a human driver. The vehicle includes an input device configured to receive a real-time request for a specific dynamic maneuver by the vehicle operating along the route from the human driver. The vehicle includes a decision circuit configured to select a real-time dynamic maneuver by arbitrating between (i) the received real-time request for the specific dynamic maneuver from the human driver and (ii) a real-time determination relative to the specific dynamic maneuver received from the autonomous driving system. The vehicle includes an implementation circuit configured to output the selected real-time dynamic maneuver to an operations system of the vehicle.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: ALISTAIR K. CHAN, JESSE R. CHEATHAM, III, HON WAH CHIN, WILLIAM DAVID DUNCAN, RODERICK A. HYDE, DAVID B. TUCKERMAN, THOMAS ALLAN WEAVER