Patents by Inventor William E. Wilson

William E. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914763
    Abstract: A system and method for conformal alignment of an aircraft-based head worn display (HWD) system defines far-field features in view of the HWD display, each far-field feature having a 3D truth position in a navigational reference frame. The aircraft GPS/IRS determines pointing vectors to each feature in the aircraft reference frame. The HWD user estimates a nominal head pose for orienting the far-field features in the HWD display, and the HWD system renders the far-field features based on the nominal head pose and pointing vectors. The rendered far-field features are aligned to their real-world 3D truth positions (either manually or with the assistance of witness cameras) and a latched pose of the HWD headtracker system determined based on a successful alignment within accuracy bounds. Based on the latched headtracker pose, the HWD headtracker alignment and the alignment of the HWD display reference frame to the aircraft reference frame are updated.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: February 27, 2024
    Assignee: Rockwell Collins, Inc.
    Inventors: Christopher M. Boggs, Gavin P. Haentjens, William T. Kirchner, Brandon E. Wilson, Kurt I. Jaeger
  • Patent number: 8405229
    Abstract: An electronic package for interconnecting a high density pattern of conductors of an electronic device (e.g., semiconductor chip) of the package and a less dense pattern of conductors on a circuitized substrate (e.g., PCB), the package including in one embodiment but a single thin dielectric layer (e.g., Kapton) with a high density pattern of openings therein and a circuit pattern on an opposing surface which includes both a high density pattern of conductors and a less dense pattern of conductors. Conductive members are positioned in the openings to electrically interconnect conductors of the electronic device to conductors of the circuitized substrate when the package is positioned thereon. In another embodiment, the interposer includes a second dielectric layer bonded to the first, with conductive members extending through the second layer to connect to the less dense pattern of circuitized substrate conductors.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: March 26, 2013
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Timothy Antesberger, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Publication number: 20130025839
    Abstract: An organic substrate capable of providing effective heat transfer through its entire thickness by the use of parallel, linear common thermally conductive openings that extend through the substrate, the substrate having thin dielectric layers bonded together to form an integral substrate structure. The structure is adapted for assisting in providing cooling of high temperature electrical components on one side by effectively transferring heat from the components to a cooling structure positioned on an opposing side. Methods of making the substrate are also provided, as is an electrical assembly including the substrate, component and cooling structure.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Frank Egitto, Voya R. Markovich, Varaprasad V. Calmidi, Timothy Antesberger, William E. Wilson
  • Publication number: 20120243147
    Abstract: A method of converting a land grid array (LGA) module to a ball grid array (BGA) module by removing and oxidizing portions of the LGA conductive pad features on the upper surface of the LGA module. A BGA solder ball is deposited on the remaining portion of the conductive feature of the LGA module, with subsequent reflowing of the BGA solder ball. By modifying the LGA module to support a BGA structure, excessive heat generated by components placed on the modified LGA pad can be conducted through the BGA structure and into the element on which the LGA module is attached, such as a PCB.
    Type: Application
    Filed: October 14, 2010
    Publication date: September 27, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Francesco F. Marconi, Barry A. Bonitz, William E. Wilson
  • Patent number: 8245392
    Abstract: A method of making an electronic package designed for interconnecting high density patterns of conductors of an electronic device (e.g., semiconductor chip) and less dense patterns of conductors of hosting circuitized substrates (e.g., chip carriers, PCBs). In one embodiment, the method includes bonding a chip to a single dielectric layer, forming a high density pattern of conductors on one surface of the layer, forming openings in the layer and then depositing metallurgy to form a desired circuit pattern which is then adapted for engaging and being electrically coupled to a corresponding pattern on yet another hosting substrate. According to another embodiment of the invention, an electronic package using a dual layered interposer is provided. Also provided are methods of making circuitized substrate assemblies using the electronic packages made using the invention's teachings.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: August 21, 2012
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Timothy Antesberger, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Patent number: 8240031
    Abstract: A flexible, high density decal and the use thereof methods of forming detachable electrical interconnections between a flexible chip carrier and a printed wiring board. The flexible decal has fine-pitch pads on a first surface and pads of a pitch wider than the fine pitch on a second surface, the fine-pitch pads on the first surface designed to electrically connect to a semiconductor device, and the wider-pitch pads on the second surface designed to electrically connect to a printed wiring board or the like. The pads on the first surface are conductively wired to the pads on the second surface through one or more insulating levels in the flexible decal.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: August 14, 2012
    Assignee: Endicott International Technologies, Inc.
    Inventors: Voya R. Markovich, Ronald V. Smith, How T. Lin, Frank D. Egitto, Rabindra N. Das, William E. Wilson, Rajinder S. Rai
  • Publication number: 20120160547
    Abstract: A substrate for use in a PCB or PWB board having a coreless buildup layer and at least one metal and at least one dielectric layer. The coreless buildup dielectric layers can consist of at least partially cured thermoset resin and thermoplastic resin.
    Type: Application
    Filed: April 22, 2010
    Publication date: June 28, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Timothy Antesberger, Rabindra N. Das, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Publication number: 20120160544
    Abstract: A substrate for use in a PCB or PWB board having a coreless buildup layer and at least one metal and at least one dielectric layer. The coreless buildup dielectric layers can consist of at least partially cured thermoset resin and thermoplastic resin. The substrate may also contain land grid array (LGA) packaging.
    Type: Application
    Filed: April 22, 2010
    Publication date: June 28, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Timothy Antesberger, Rabindra N. Das, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Publication number: 20120031649
    Abstract: A substrate for use in a PCB or PWB board having a coreless buildup layer and at least one metal and at least one dielectric layer. The coreless buildup dielectric layers can consist of at least partially cured thermoset resin and thermoplastic resin. The substrate may also contain land grid array (LGA) packaging.
    Type: Application
    Filed: April 22, 2010
    Publication date: February 9, 2012
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Timothy Antesberger, Rabindra N. Das, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Publication number: 20120015532
    Abstract: A flexible, high density decal and the use thereof methods of forming detachable electrical interconnections between a flexible chip carrier and a printed wiring board. The flexible decal has fine-pitch pads on a first surface and pads of a pitch wider than the fine pitch on a second surface, the fine-pitch pads on the first surface designed to electrically connect to a semiconductor device, and the wider-pitch pads on the second surface designed to electrically connect to a printed wiring board or the like. The pads on the first surface are conductively wired to the pads on the second surface through one or more insulating levels in the flexible decal.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Applicant: Endicott Interconnect Technologies, Inc.
    Inventors: Voya R. Markovich, Ronald V. Smith, How T. Lin, Frank D. Egitto, Rabindra N. Das, William E. Wilson, Rajinder S. Rai
  • Publication number: 20110127664
    Abstract: An electronic package for interconnecting a high density pattern of conductors of an electronic device (e.g., semiconductor chip) of the package and a less dense pattern of conductors on a circuitized substrate (e.g., PCB), the package including in one embodiment but a single thin dielectric layer (e.g., Kapton) with a high density pattern of openings therein and a circuit pattern on an opposing surface which includes both a high density pattern of conductors and a less dense pattern of conductors. Conductive members are positioned in the openings to electrically interconnect conductors of the electronic device to conductors of the circuitized substrate when the package is positioned thereon. In another embodiment, the interposer includes a second dielectric layer bonded to the first, with conductive members extending through the second layer to connect to the less dense pattern of circuitized substrate conductors.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Inventors: Timothy Antesberger, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Publication number: 20110126408
    Abstract: A method of making an electronic package designed for interconnecting high density patterns of conductors of an electronic device (e.g., semiconductor chip) and less dense patterns of conductors of hosting circuitized substrates (e.g., chip carriers, PCBs). In one embodiment, the method includes bonding a chip to a single dielectric layer, forming a high density pattern of conductors on one surface of the layer, forming openings in the layer and then depositing metallurgy to form a desired circuit pattern which is then adapted for engaging and being electrically coupled to a corresponding pattern on yet another hosting substrate. According to another embodiment of the invention, an electronic package using a dual layered interposer is provided. Also provided are methods of making circuitized substrate assemblies using the electronic packages made using the invention's teachings.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 2, 2011
    Inventors: Timothy Antesberger, Frank D. Egitto, Voya R. Markovich, William E. Wilson
  • Patent number: 7381587
    Abstract: A method of making a circuitized substrate and an electrical assembly utilizing same in which the substrate is comprised of at least two sub-composites in which the dielectric material of at least one of these sub-composites is heated during bonding (e.g., lamination) to the other sufficiently to cause the dielectric material to flow into and substantially fill openings in a conductive layer for the bonded structure. Conductive thru-holes are formed within the bonded structure to couple selected ones of the structure's conductive layers. Formation of an electrical assembly is possible by positioning one or more electrical components (e.g., semiconductor chips or chip carriers) on the final structure and electrically coupling these to the structure's external circuitry.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: June 3, 2008
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Robert M. Japp, John M. Lauffer, Voya R. Markovich, William E. Wilson
  • Patent number: 7353590
    Abstract: A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
  • Patent number: 7328502
    Abstract: Apparatus for making circuitized substrates using a continuous roll format in which layers of conductor and dielectric are fed into the apparatus, bonded, and passed on to other nearby work stations in which various processes such as hole formation, circuitization and, finally, segmentation occur. The resulting substrates can then be individually bonded to other, like substrates to form a larger multi-layered substrate with a plurality of conductive thru-holes, conductive and dielectric layers as part thereof.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: February 12, 2008
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: John M. Lauffer, Voya R. Markovich, James W. Orband, William E. Wilson
  • Patent number: 7293355
    Abstract: Apparatus and method for making circuitized substrates using a continuous roll format in which layers of conductor and dielectric are fed into the apparatus, bonded, and passed on to other nearby work stations in which various processes such as hole formation, circuitization and, finally, segmentation occur. The resulting substrates can then be individually bonded to other, like substrates to form a larger multi-layered substrate with a plurality of conductive thru-holes, conductive and dielectric layers as part thereof.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: November 13, 2007
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: John M. Lauffer, Voya R. Markovich, James W. Orband, William E. Wilson
  • Patent number: 6986198
    Abstract: A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer termination in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: January 17, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kenneth Fallon, Miguel A. Jimarez, Ross W. Keesler, John M. Lauffer, Roy H. Magnuson, Voya R. Markovich, Irv Memis, Jim P. Paoletti, Marybeth Perrino, John A. Welsh, William E. Wilson
  • Patent number: 6920843
    Abstract: An apparatus for programmably controlling the operation of a water heater having a programmable timer coupled to the water heater for establishing predetermined times of when the water heater should operate. The programmable controller allows for the operation of a solenoid valve which controls the flow of natural gas to a burner. The present invention may utilize a conventional 110/120 volt power source as provided in a power vented gas water heater or an electrical water heater, or the present invention may utilize a thermopile as a mini generator by which to power the programmable timer and solenoid.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: July 26, 2005
    Inventor: William E. Wilson
  • Patent number: 6852152
    Abstract: A colloidal metal seed formulation useful for catalytically activating a surface of a non-conductive dielectric substrate in an electroless plating process is provided. The colloidal metal seed formulation includes stannous chloride, palladium chloride, HCl and a surfactant selected from a diphenyloxide disulfonic acid or alkali or alkaline earth metal salt thereof, C30H50O10, an alcohol alkoxylate and mixtures thereof. A method of electroless plating of a conductive metal onto a non-conductive dielectric substrate using the colloidal metal seed formulation is also provided.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: February 8, 2005
    Assignee: International Business Machines Corporation
    Inventors: Raymond T. Galasco, Roy H. Magnuson, Voya R. Markovich, Thomas R. Miller, Anita Sargent, William E. Wilson
  • Patent number: 6830875
    Abstract: A method for forming an electronic structure. Provides is a layer that includes a cylindrical volume of a photoimageable dielectric (PID) material, an annular volume of the PID material circumscribing the cylindrical volume, and a remaining volume of the PID material circumscribing the annular volume. The layer is photolithograhically exposed to radiation. The annular volume is fully cured by the radiation. The remaining volume is partially cured by the remaining volume by said radiation. The method prevents curing of the cylindrical volume, wherein the PID material in the cylindrical volume remains uncured.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: December 14, 2004
    Assignee: International Business Machines Corporation
    Inventors: Stephen J. Fuerniss, Gary Johansson, Ross W. Keesler, John M. Lauffer, Voya R. Markovich, Peter A. Moschak, David J. Russell, William E. Wilson