Patents by Inventor William Farinelli

William Farinelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170128096
    Abstract: Methods and apparatus are provided for affecting an appearance of skin by harvesting small portions of tissue from a donor (first) site and applying them at a recipient (second) site. A plurality of micrografts can be formed from a piece of graft tissue and attached to a dressing material. The dressing material can then be expanded to increase a separation distance between the micrografts, and the dressing material having spaced-apart micrografts attached thereto can be applied to a prepared recipient site. An apparatus can be provided that expands the dressing material using a pressurized fluid. A further method can include providing a suspension of small portions of graft tissue in a solution. The solution can be injected into blisters formed at a recipient (second) site and the tissue portions allowed to attach and proliferate. A method and apparatus can also be provided for forming corresponding blisters at a donor site and at a recipient site.
    Type: Application
    Filed: August 31, 2016
    Publication date: May 11, 2017
    Inventors: Falguni Asrani, William Farinelli, Ajay Shah, Vincent Liu, Richard R. Anderson
  • Publication number: 20170027983
    Abstract: One aspect of the invention provides a method for alleviating acne including: applying a therapeutic substance to an area of skin having follicles, said therapeutic substance comprising a plurality of metal nanoparticles within a carrier; using a device to impart mechanical energy to deliver some of said therapeutic substance into a plurality of follicles; removing the composition remaining on the skin surface while leaving the therapeutic substance in said follicles; and irradiating the skin to which the composition was applied with light energy effective to treat acne.
    Type: Application
    Filed: October 11, 2016
    Publication date: February 2, 2017
    Applicant: The General Hospital Corporation
    Inventors: Richard Rox Anderson, William A. Farinelli, Gerard van Hamel Platerink
  • Publication number: 20160310527
    Abstract: The present invention provides compositions comprising energy (e.g., light) absorbing submicron particles (e.g., nanoparticles comprising a silica core and a gold shell) and methods for delivering such particles via topical application. This delivery is facilitated by application of mechanical agitation (e.g. massage), acoustic vibration in the range of 10 Hz-20 kHz, ultrasound, alternating suction and pressure, and microjets.
    Type: Application
    Filed: November 24, 2015
    Publication date: October 27, 2016
    Inventors: Dilip Paithankar, Richard Dean Blomgren, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas, Gerard van Hamel Platerink
  • Patent number: 9451979
    Abstract: Methods and apparatus are provided for affecting an appearance of skin by harvesting small portions of tissue from a donor (first) site and applying them at a recipient (second) site. A plurality of micrografts can be formed from a piece of graft tissue and attached to a dressing material. The dressing material can then be expanded to increase a separation distance between the micrografts, and the dressing material having spaced-apart micrografts attached thereto can be applied to a prepared recipient site. An apparatus can be provided that expands the dressing material using a pressurized fluid. A further method can include providing a suspension of small portions of graft tissue in a solution. The solution can be injected into blisters formed at a recipient (second) site and the tissue portions allowed to attach and proliferate. A method and apparatus can also be provided for forming corresponding blisters at a donor site and at a recipient site.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 27, 2016
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Falguni Asrani, Ajay Shah, William Farinelli, Vincent Liu, Richard R. Anderson
  • Patent number: 9393073
    Abstract: A system and method are provided that are capable of selectively treating a vein using photothermolysis techniques, where an electromagnetic radiation is applied to tissue containing the vein. The radiation can be selected so that it may be more effectively absorbed by veins as compared to arteries. Thus, unwanted thermal damage to arteries in the vicinity of the vein being treated can be reduced or avoided. The radiation can have a frequency of approximately 654 nm, which can provide a ratio of absorption by veins to absorption by arteries of about 3.7. Other wavelengths near 654 nm may be provided, for example, which can have an absorption ratio greater than, e.g., about 3.3 to 3.6.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: July 19, 2016
    Assignee: The General Hospital Corporation
    Inventors: Richard R. Anderson, Iris Kedar Rubin, William A. Farinelli
  • Patent number: 9333036
    Abstract: Provided herein are devices, systems and methods for treating a vocal fold pathology by forming a substantially planar void below the epithelium of the vocal fold using optical energy. Also provided are devices, systems, and methods for combined imaging and treating of a vocal fold pathology.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 10, 2016
    Assignees: Board of Regents, The University of Texas System, The General Hospital Corporation
    Inventors: Adela Ben-Yakar, Christopher L. Hoy, William Neil Everett, James B. Kobler, Richard Rox Anderson, William A. Farinelli, Steven M. Zeitels
  • Publication number: 20160030722
    Abstract: Exemplary methods and devices can be provided for an improved wound dressing that facilitates healing. For example, the dressing can include a membrane that maintains a sterile enclosed volume over the wound. Pressure in the enclosed volume can be reduced by deforming the membrane and compressing a resilient open-cell sponge provided therein, facilitating a relatively unobstructed flow of air out of the enclosed volume. Oxygen and/or moisture can be introduced by a controlled flow of moist oxygen-containing gas into the enclosed volume. An oxygen-producing reaction within the enclosed volume using calcium peroxide or the like can also provide oxygen to the wound site. An external vacuum source that includes compressible foam can also be coupled to the enclosed volume to provide a reduced pressure therein. The external vacuum source can be attached to a user's body to maintain the reduced pressure without use of electricity.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 4, 2016
    Inventors: RICHARD R. ANDERSON, MARTIN PURSCHKE, WALFRE FRANCO, JOSHUA TAM, YING WANG, WILLIAM FARINELLI
  • Publication number: 20150351840
    Abstract: A system and method are provided that are capable of selectively treating a vein using photothermolysis techniques, where an electromagnetic radiation is applied to tissue containing the vein. The radiation can be selected so that it may be more effectively absorbed by veins as compared to arteries. Thus, unwanted thermal damage to arteries in the vicinity of the vein being treated can be reduced or avoided. The radiation can have a frequency of approximately 654 nm, which can provide a ratio of absorption by veins to absorption by arteries of about 3.7. Other wavelengths near 654 nm may be provided, for example, which can have an absorption ratio greater than, e.g., about 3.3 to 3.6.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Richard R. Anderson, Iris Kedar Rubin, William A. Farinelli
  • Patent number: 9138294
    Abstract: A system and method are provided that are capable of selectively treating a vein using photothermolysis techniques, where an electromagnetic radiation is applied to tissue containing the vein. The radiation can be selected so that it may be more effectively absorbed by veins as compared to arteries. Thus, unwanted thermal damage to arteries in the vicinity of the vein being treated can be reduced or avoided. The radiation can have a frequency of approximately 654 nm, which can provide a ratio of absorption by veins to absorption by arteries of about 3.7. Other wavelengths near 654 nm may be provided, for example, which can have an absorption ratio greater than, e.g., about 3.3 to 3.6.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 22, 2015
    Assignee: The General Hospital Corporation
    Inventors: Richard R. Anderson, Iris Kedar Rubin, William A. Farinelli
  • Publication number: 20150238214
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Application
    Filed: May 14, 2015
    Publication date: August 27, 2015
    Applicant: The General Hospital Corporation
    Inventors: Richard Rox Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Publication number: 20150238776
    Abstract: A system and method are provided for preventing damage to the epidermis or other epithelial or non-target tissue during photodynamic therapy treatment. For example, an inhibiting radiation can be used to control formation of a photosensitizer from a precursor photosensitizer in the epidermis or epithelial tissue. Subsequent application of a treatment radiation can activate the photosensitizer to damage or destroy target sites while the non-target tissue remains substantially unaffected.
    Type: Application
    Filed: May 8, 2015
    Publication date: August 27, 2015
    Inventors: Fernanda Hidemi Sakamoto, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Patent number: 9108045
    Abstract: A system and method are provided for preventing damage to the epidermis or other epithelial or non-target tissue during photodynamic therapy treatment. For example, an inhibiting radiation can be used to control formation of a photosensitizer from a precursor photosensitizer in the epidermis or epithelial tissue. Subsequent application of a treatment radiation can activate the photosensitizer to damage or destroy target sites while the non-target tissue remains substantially unaffected.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: August 18, 2015
    Assignee: The General Hospital Corporation
    Inventors: Fernanda Hidemi Sakamoto, Richard Rox Anderson, William A. Farinelli, Apostolos G. Doukas
  • Publication number: 20150216545
    Abstract: Exemplary methods and devices can be provided for harvesting a plurality of small tissue pieces, e.g., having widths less than about 1 mm or 0.5 mm, using one or more hollow needles. A fluid can be flowed through a conduit past the proximal ends of the needles to facilitate removal of the tissue pieces from the needle lumens, and can maintain the tissue pieces in a controlled and protective liquid environment. A filter can be used to extract and collect the tissue pieces from the liquid, or the tissue pieces can be deposited directly onto a porous dressing. Such tissue pieces can be used as microscopic grafts, which can be applied directly to a wound site or provided on a substrate or dressing, or stored for later use. Such microscopic grafts can promote tissue regrowth and wound healing, or can be applied to a scaffold to grow new tissue.
    Type: Application
    Filed: August 14, 2013
    Publication date: August 6, 2015
    Inventors: Richard R. Anderson, Walfre Franco, Joel N. Jimenez-Lozano, William A. Farinelli
  • Publication number: 20150173991
    Abstract: Exemplary methods and systems can be provided for resurfacing of skin that include formation of a plurality of small holes, e.g., having widths greater than about 0.2 mm and less than about 0.7 mm or 0.5 mm, using a mechanical apparatus. Compressive and/or tensile forces can then be applied to the treated region of skin as the damage heals to facilitate hole closure, and provide enhanced and/or directional shrinkage of the treated skin area.
    Type: Application
    Filed: July 5, 2013
    Publication date: June 25, 2015
    Inventors: Richard R. Anderson, Mathew Avram, Fernanda H. Sakamoto, Wikunda Limpiangkanan, William A. Farinelli
  • Patent number: 9060803
    Abstract: Exemplary embodiments of apparatus and method for obtaining one or more portions of biological tissue (“micrografts”) to form grafts are provided. For example, a hollow tube can be inserted into tissue at a donor site, and a pin provided within the tube can facilitate controlled removal of the micrograft from the tube. Micrografts can be harvested and directly implanted into an overlying biocompatible matrix through coordinated motion of the tube and pin. A needle can be provided around the tube to facilitate a direct implantation of a micrograft into a remote recipient site or matrix. The exemplary apparatus can include a plurality of such tubes and pins for simultaneous harvesting and/or implanting of a plurality of micrografts. The harvested micrografts can have a small dimension, e.g., less than about 1 mm, which can promote healing of the donor site and/or viability of the harvested tissue.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: June 23, 2015
    Assignee: The General Hospital Corporation
    Inventors: Richard A. Anderson, William A. Farinelli, Walfre Franco, Joshua Tam, Fernanda H. Sakamoto, Apostolos G. Doukas, Martin Purschke, Min Yao
  • Publication number: 20150165180
    Abstract: The present invention is directed to a method and apparatus for delivering substances, e.g., therapeutic substances, into openings on or near a skin surface, such as hair follicles, pores and/or into sebaceous glands. This can be achieved by using an apparatus to direct a substance into the openings under pressure via one or more nozzles or slits. A portion of the sebum present in the hair follicle is optionally heated and/or removed, e.g. using low-pressure conduit located on the lower surface of the apparatus, before introducing the therapeutic substance.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Richard Rox Anderson, William A. Farinelli
  • Publication number: 20150150629
    Abstract: Exemplary methods and systems can be provided for resurfacing of skin that include formation of a plurality of small holes, e.g., having widths greater than about 0.2 mm and less than about 0.7 mm or 0.5 mm, using ablative electromagnetic radiation, e.g., optical energy. An optically transparent plate or window can be pressed over a surface of the skin tissue as the holes are ablated to disrupt formation of a thermal cuff around the holes. Compressive or tensile forces can then be applied to the treated region of the skin tissue as the damage heals to facilitate hole closure and provide enhanced and/or directional shrinkage of the treated skin area.
    Type: Application
    Filed: July 5, 2013
    Publication date: June 4, 2015
    Inventors: Richard Rox Anderson, Mathew Avram, Wikunda Limpiangkanan, William A. Farinelli
  • Patent number: 8961450
    Abstract: The present invention is directed to a method and apparatus for delivering substances, e.g., therapeutic substances, into openings on or near a skin surface, such as hair follicles, pores and/or into sebaceous glands. This can be achieved by using an apparatus to direct a substance into the openings under pressure via one or more nozzles or slits. A portion of the sebum present in the hair follicle is optionally heated and/or removed, e.g. using low-pressure conduit located on the lower surface of the apparatus, before introducing the therapeutic substance.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: February 24, 2015
    Assignee: The General Hospital Corporation
    Inventors: Richard R. Anderson, William A. Farinelli
  • Publication number: 20130310818
    Abstract: A system and method are provided that are capable of selectively treating a vein using photothermolysis techniques, where an electromagnetic radiation is applied to tissue containing the vein. The radiation can be selected so that it may be more effectively absorbed by veins as compared to arteries. Thus, unwanted thermal damage to arteries in the vicinity of the vein being treated can be reduced or avoided. The radiation can have a frequency of approximately 654 nm, which can provide a ratio of absorption by veins to absorption by arteries of about 3.7. Other wavelengths near 654 nm may be provided, for example, which can have an absorption ratio greater than, e.g., about 3.3 to 3.6.
    Type: Application
    Filed: July 23, 2013
    Publication date: November 21, 2013
    Inventors: Richard R. Anderson, Iris Redar Rubin, William A. Farinelli
  • Publication number: 20130211391
    Abstract: Provided herein are devices, systems and methods for treating a vocal fold pathology by forming a substantially planar void below the epithelium of the vocal fold using optical energy. Also provided are devices, systems, and methods for combined imaging and treating of a vocal fold pathology.
    Type: Application
    Filed: January 21, 2011
    Publication date: August 15, 2013
    Applicants: THE GENERAL HOSPITAL CORPORATION, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Adela BenYakar, Christopher L. Hoy, William Neil Everett, James B. Kobler, Richard Rox Anderson, William A. Farinelli, Steven M. Zeitels