Patents by Inventor William J. Gallagher

William J. Gallagher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5183970
    Abstract: A superconductive transmission line is formed of mixed metallic oxide ceramic material, particularly Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x drawn epitaxially upon a substrate. The superconductive material has basal crystallographic planes in alignment with copper oxide of the ceramic material. The planes are parallel to the substrate. The transmission line is constructed of a plurality of electrically conductive elements, each of which is formed of the superconductive material. The conductive elements are arranged with the crystalline planes parallel to an axis of the transmission line, along which axis power is to flow. Thereby, magnetic fields induced by currents flowing in the conductive elements intersect the conductive elements perpendicularly to the basal crystallographic planes to maximize the current which can flow while retaining linearity between magnetization and applied magnetic field.
    Type: Grant
    Filed: March 9, 1992
    Date of Patent: February 2, 1993
    Assignee: International Business Machines Corp.
    Inventors: William J. Gallagher, Thomas K. Worthington
  • Patent number: 5055158
    Abstract: A method for fabricating Josephson integrated circuits and the circuit is described incorporating the steps of depositing layers of different materials to form a trilayer Josephson junction, etching to define a plurality of trilayer areas, depositing dielectric material thereover, and chemical-mechanical polishing to planarize the dielectric material down to provide a coplanar surface with the tops of the trilayer areas for subsequent interconnection. The invention overcomes the problem of poor quality Josephson junctions, low Vm's, and crevices or gaps in the upper coplanar surface between the trilayer area and the surrounding dielectric material.
    Type: Grant
    Filed: April 4, 1991
    Date of Patent: October 8, 1991
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Chao-Kun Hu, Mark A. Jaso, Mark B. Ketchen, Alan W. Kleinsasser, Dale J. Pearson
  • Patent number: 4962086
    Abstract: High T.sub.c oxide superconductive films can be formed on gallate layers, where the gallate layers include a rare earth element or a rare earth-like element. Combinations of rare earth elements and rare earth-like elements can also be utilized. The superconductive films can be epitaxially deposited on these gallate layers to form single crystals or, in the minimum, highly oriented superconductive layers. Any high T.sub.c superconductive oxide material can be utilized, but the best lattice matches are to superconductive materials including copper oxides. Examples include Y-Ba-Cu-O systems, Bi-based systems and Tl-based systems.
    Type: Grant
    Filed: June 8, 1988
    Date of Patent: October 9, 1990
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Edward A. Giess, Aranava Gupta, Robert B. Laibowitz, Eugene J. O'Sullivan, Robert L. Sandstrom
  • Patent number: 4831421
    Abstract: A switch is provided that introduces quasiparticles at an asymmetric location into a reduced cross-sectional area microbridge link that is part of an output path. The quasiparticles nucleate a small region of normal resistivity and the normal region propagates to produce normal resistivity in the entire reduced cross-sectional area microbridge link. The asymmetry of the location provides input-output isolation. The high critical current, high resistivity material for the reduced cross-section member provides high current and voltage gain and the small size provides high speed. In one structure, an input film conductor is asymmetrically, centrally positioned in an insulator stack and a microbridge like is positioned on a beveled side of the stack with the input conductor in tunneling relationship with part of the narrow portion of the microbridge link. Decoupling between input and output sufficient to permit one switch to drive several others is provided.
    Type: Grant
    Filed: June 28, 1988
    Date of Patent: May 16, 1989
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Stanley I. Raider
  • Patent number: 4143275
    Abstract: Method and apparatus for applying radiation by producing X-rays of a selected spectrum and intensity and directing them to a desired location. Radiant energy is directed from a laser onto a target to produce such X-rays at the target, which is so positioned adjacent to the desired location as to emit the X-rays toward the desired location; or such X-rays are produced in a region away from the desired location, and are channeled to the desired location.The radiant energy directing means may be shaped (as with bends; adjustable, if desired) to circumvent any obstruction between the laser and the target. Similarly, the X-ray channeling means may be shaped (as with fixed or adjustable bends) to circumvent any obstruction between the region where the X-rays are produced and the desired location.For producing a radiograph in a living organism the X-rays are provided in a short pulse to avoid any blurring of the radiograph from movement of or in the organism.
    Type: Grant
    Filed: September 28, 1977
    Date of Patent: March 6, 1979
    Assignee: Battelle Memorial Institute
    Inventors: Philip J. Mallozzi, Harold M. Epstein, Richard G. Jung, David C. Applebaum, Barry P. Fairand, William J. Gallagher, Ronald L. Uecker, Myron C. Muckerheide
  • Patent number: 4060769
    Abstract: Methods and apparatus for directing radiation pulses to a region wherein either a pulse or a substance in the region is adversely affected by the presence of more than a given power density therein. A laser pulse is split into a plurality of portions and each portion is directed along a path of different length to provide in rapid succession a plurality of pulses each having less than the given power density. Each pulse is caused to arrive at the region at an angle differing by at least its divergence angle from the arrival angle of every other pulse (or, if at a smaller angle from another pulse, with opposite polarization therefrom) and at a time enough later than the arrival time of the preceding pulse that the total power density in the region at any instant is less than the given power density. Thus, the effective total power density of the radiation directed through the region may exceed the given power density without adversely affecting any pulse or substance in the region.
    Type: Grant
    Filed: September 20, 1974
    Date of Patent: November 29, 1977
    Assignee: Battelle Memorial Institute
    Inventors: Philip J. Mallozzi, Harold M. Epstein, David C. Applebaum, William J. Gallagher, Bernerd E. Campbell
  • Patent number: 4058486
    Abstract: A method of producing X-rays by directing radiant energy from a laser onto a target. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10.sup.
    Type: Grant
    Filed: December 29, 1972
    Date of Patent: November 15, 1977
    Assignee: Battelle Memorial Institute
    Inventors: Philip J. Mallozzi, Harold M. Epstein, Richard G. Jung, David C. Applebaum, Barry P. Fairand, William J. Gallagher
  • Patent number: 4002403
    Abstract: Methods and apparatus for directing a radiation pulse from a laser to a target or other selected location and preventing undesired earlier radiation from the laser having less than a selected intensity from reaching the selected location.A beam splitter directs a major portion of the radiation pulse energy along a longer main path to a predetermined region and continuing on toward the selected location, and directs a minor portion along a shorter secondary path to the predetermined region. A reflective surface on a transparent support in the predetermined region prevents energy having less than the selected intensity from continuing on toward the selected location.
    Type: Grant
    Filed: October 11, 1973
    Date of Patent: January 11, 1977
    Assignee: Battelle Memorial Institute
    Inventors: Philip J. Mallozzi, Harold M. Epstein, David C. Applebaum, William J. Gallagher, Bernerd E. Campbell