Patents by Inventor William J. Ray

William J. Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180357455
    Abstract: In one embodiment, a printed security mark comprises a random arrangement of printed LEDs and a wavelength conversion layer. During fabrication of the mark, the LEDs are energized, and the resulting dot pattern is converted into a unique digital first code and stored in a database. The emitted spectrum vs. intensity and persistence of the wavelength conversion layer is also encoded in the first code. The mark may be on a credit card, casino chip, banknote, passport, etc. to be authenticated. For authenticating the mark, the LEDs are energized and the dot pattern, spectrum vs. intensity, and persistence are converted into a code and compared to the first code stored in the database. If there is a match, the mark is authenticated.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 13, 2018
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Publication number: 20180357522
    Abstract: In one embodiment, a printed LED area comprises a random arrangement of printed LEDs and a wavelength conversion layer. The LED area is embedded in an object to be authenticated, such as a credit card or a casino chip. The object may include a light guide for enabling the generated light to be emitted from any portion of the object. In one embodiment, when the LEDs are energized during authentication of the object, the existence of light emitted by the object is sufficient authentication and/or provides feedback to the user that the object is being detected. For added security, the emitted spectrum vs. intensity and persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 13, 2018
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Patent number: 10109864
    Abstract: An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: October 23, 2018
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, William J. Ray, Yasser Salah
  • Publication number: 20180269494
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Application
    Filed: May 22, 2018
    Publication date: September 20, 2018
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Publication number: 20180212253
    Abstract: The disclosed technology generally relates to energy storage devices, and more particularly to energy storage devices comprising frustules. According to an aspect, a supercapacitor comprises a pair of electrodes and an electrolyte, wherein at least one of the electrodes comprises a plurality of frustules having formed thereon a surface active material. The surface active material can include nanostructures. The surface active material can include one or more of a zinc oxide, a manganese oxide and a carbon nanotube.
    Type: Application
    Filed: March 20, 2018
    Publication date: July 26, 2018
    Inventors: Vera N. Lockett, Yasser Salah, John G. Gustafson, William J. Ray, Sri Harsha Kolli
  • Publication number: 20180198136
    Abstract: An energy storage device includes a printed current collector layer, where the printed current collector layer includes nickel flakes and a current collector conductive carbon additive. The energy storage device includes a printed electrode layer printed over the current collector layer, where the printed electrode layer includes an ionic liquid and an electrode conductive carbon additive. The ionic liquid can include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The current collector conductive carbon can include graphene and the electrode conductive carbon additive can include graphite, graphene, and/or carbon nanotubes.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Inventors: Vera N. Lockett, Leila Daneshi, William J. Ray, John G. Gustafson
  • Patent number: 10020516
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: July 10, 2018
    Assignee: PRINTED ENERGY PTY LTD
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Patent number: 9993875
    Abstract: Systems and methods for fabricating nanostructures using other nanostructures as templates. A method includes mixing a dispersion and a reagent solution. The dispersion includes nanostructures such as nanowires including a first element such as copper. The reagent solution includes a second element such as silver. The second element at least partially replaces the first element in the nanostructures. The nanostructures are optionally washed, filtered, and/or deoxidized.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: June 12, 2018
    Assignee: NTHDEGREE TECHNOLOGIES WORLDWIDE, INC.
    Inventors: Vera N. Lockett, Mark D. Lowenthal, William J. Ray, John Gustafson
  • Patent number: 9917309
    Abstract: An energy storage device includes a printed current collector layer, where the printed current collector layer includes nickel flakes and a current collector conductive carbon additive. The energy storage device includes a printed electrode layer printed over the current collector layer, where the printed electrode layer includes an ionic liquid and an electrode conductive carbon additive. The ionic liquid can include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The current collector conductive carbon can include graphene and the electrode conductive carbon additive can include graphite, graphene, and/or carbon nanotubes.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: March 13, 2018
    Assignee: PRINTED ENERGY PTY LTD
    Inventors: Vera N. Lockett, Leila Daneshi, William J. Ray, John G. Gustafson
  • Publication number: 20180069246
    Abstract: An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Inventors: Vera N. Lockett, John G. Gustafson, William J. Ray, Yasser Salah
  • Publication number: 20180057363
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 1, 2018
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 9834447
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: December 5, 2017
    Assignee: PRINTED ENERGY PTY LTD
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 9825305
    Abstract: An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: November 21, 2017
    Assignee: PRINTED ENERGY PTY LTD
    Inventors: Vera N. Lockett, John G. Gustafson, William J. Ray, Yasser Salah
  • Patent number: 9815998
    Abstract: A conductive ink may include a nickel component, a polycarboxylic acid component, and a polyol component, the polycarboxylic acid component and the polyol component being reactable to form a polyester component. The polyester component may be formed in situ in the conductive ink from a polyol component and a polycarboxylic acid component. The conductive ink may include a carbon component. The conductive ink may include an additive component. The conductive ink may include nickel flakes, graphene flakes, glutaric acid, and ethylene glycol. The conductive ink may be printed (e.g., screen printed) on a substrate and cured to form a conductive film. A conductive film may include a nickel component and a polyester component.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 14, 2017
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Alexandra E. Hartman, John G. Gustafson, Mark D. Lowenthal, William J. Ray, Leila Daneshi
  • Publication number: 20170222232
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Application
    Filed: December 9, 2016
    Publication date: August 3, 2017
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Publication number: 20170125823
    Abstract: An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 4, 2017
    Inventors: Vera N. Lockett, John G. Gustafson, William J. Ray, Yasser Salah
  • Publication number: 20170066941
    Abstract: A conductive ink may include a nickel component, a polycarboxylic acid component, and a polyol component, the polycarboxylic acid component and the polyol component being reactable to form a polyester component. The polyester component may be formed in situ in the conductive ink from a polyol component and a polycarboxylic acid component. The conductive ink may include a carbon component. The conductive ink may include an additive component. The conductive ink may include nickel flakes, graphene flakes, glutaric acid, and ethylene glycol. The conductive ink may be printed (e.g., screen printed) on a substrate and cured to form a conductive film. A conductive film may include a nickel component and a polyester component.
    Type: Application
    Filed: August 15, 2016
    Publication date: March 9, 2017
    Inventors: Vera N. Lockett, Alexandra E. Hartman, John G. Gustafson, Mark D. Lowenthal, William J. Ray, Leila Daneshi
  • Publication number: 20170018049
    Abstract: On a flexible substrate is printed, LEDs, a battery, a flasher, and an actuator. The actuator may be a photo-switch that causes the battery and flasher to periodically energize the LEDs when a sufficient ambient light impinges on the actuator. The substrate may be an insert in a transparent package containing a product, such as a razor. When the package is in the front of a display in a store, the ambient light causes the LEDs to flash, such as every 10-30 seconds to attract consumers to the product. The substrate may also form part of the outer surface of the package. The flasher may simply flash the LEDs or create a dynamic display by energizing different groups of the LEDs at different times.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 19, 2017
    Inventors: Alexander S. Ray, Richard A. Blanchard, Bradley S. Oraw, Shawn Barber, Mark D. Lowenthal, William J. Ray, Neil O. Shotton, David Moffenbeier, Vera N. Lockett
  • Patent number: 9548511
    Abstract: An energy storage device can include a cathode having a first plurality of frustules, where the first plurality of frustules can include nanostructures having an oxide of manganese. The energy storage device can include an anode comprising a second plurality of frustules, where the second plurality of frustules can include nanostructures having zinc oxide. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include an oxide of manganese. A frustule can have a plurality of nanostructures on at least one surface, where the plurality of nanostructures can include zinc oxide. An electrode for an energy storage device includes a plurality of frustules, where each of the plurality of frustules can have a plurality of nanostructures formed on at least one surface.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 17, 2017
    Assignee: NthDegree Technologies Worldwide Inc.
    Inventors: Vera N. Lockett, John G. Gustafson, William J. Ray, Yasser Salah
  • Patent number: 9520598
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: December 13, 2016
    Assignee: NthDegree Technologies Worldwide Inc.
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray