Patents by Inventor William J. Taylor, Jr.

William J. Taylor, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7544595
    Abstract: A method for forming a semiconductor device includes forming a gate dielectric over a substrate, forming a metal electrode over the gate dielectric, forming a first sacrificial layer which includes polysilicon or a metal over the metal electrode, removing the first sacrificial layer, and forming a gate electrode contact over and coupled to the metal electrode.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: June 9, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventor: William J. Taylor, Jr.
  • Publication number: 20090068807
    Abstract: A method of forming devices including forming a first region and a second region in a semiconductor substrate is provided. The method further includes forming a semiconductive material over the first region, wherein the semiconductive material has a different electrical property than the first semiconductor substrate, forming a first dielectric material over the first region, depositing a second dielectric material over the first dielectric material and over the second region, wherein the second dielectric material is different than the first dielectric material, and depositing a gate electrode material over the high dielectric constant material. In one embodiment, the semiconductive material is silicon germanium and the semiconductor substrate is silicon.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 12, 2009
    Inventors: Gauri V. Karve, Srikanth B. Samavedam, William J. Taylor, JR.
  • Publication number: 20090029538
    Abstract: A method including partially etching a first portion of a first layer, wherein the first layer is a conductive layer, is provided. The method further includes removing at least a portion of a second layer. The method further includes completing etching of said first portion of the conductive layer so that said first portion of the conductive layer is removed. The method further includes completing formation of the semiconductor device.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 29, 2009
    Inventors: William J. Taylor, JR., Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer
  • Publication number: 20090004792
    Abstract: A method for forming a semiconductor structure includes forming a channel region layer over a semiconductor layer where the semiconductor layer includes a first and a second well region, forming a protection layer over the channel region layer, forming a first gate dielectric layer over the first well region, forming a first metal gate electrode layer over the first gate dielectric, removing the protection layer, forming a second gate dielectric layer over the channel region layer, forming a second metal gate electrode layer over the second gate dielectric layer, and forming a first gate stack including a portion of each of the first gate dielectric layer and the first metal gate electrode layer over the first well region and forming a second gate stack including a portion of each of the second gate dielectric layer and the second metal gate electrode layer over the channel region layer.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: Gauri V. Karve, Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer, William J. Taylor, JR.
  • Patent number: 7445981
    Abstract: A method includes forming a first gate dielectric layer over a semiconductor layer having a first and a second well region, forming a first metal gate electrode layer over the first gate dielectric, forming a sidewall protection layer over the first metal gate electrode layer and adjacent sidewalls of the first gate dielectric layer and first metal gate electrode layer, forming a channel region layer over the second well region, forming a second gate dielectric layer over the channel region layer, forming a second metal gate electrode layer, and forming a first gate stack including a portion of each of the first gate dielectric layer and first metal gate electrode layer over the first well region and forming a second gate stack including a portion of each of the second gate dielectric layer and second metal gate electrode layer over the channel region layer and over the second well region.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer, William J. Taylor, Jr.
  • Patent number: 7365410
    Abstract: A method for forming a semiconductor structure including providing a semiconductor substrate, forming a metallic buffer layer over the semiconductor substrate, forming an amorphous semiconductor layer over the metallic buffer layer, and recrystallizing the amorphous semiconductor layer to form a crystalline semiconductor layer. A semiconductor structure includes a semiconductor substrate, a buffer layer comprising at least one of silicide and germanide formed over the semiconductor substrate, and a crystalline semiconductor layer formed over the metallic buffer layer.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: April 29, 2008
    Assignee: Freescale, Semiconductor, Inc.
    Inventors: Alexander A. Demkov, William J. Taylor, Jr.
  • Patent number: 7179700
    Abstract: An N channel transistor and a P channel transistor have their source/drains contacts with different suicides to provide for low resistance contacts. The silicides are chosen to provide good matching of the work functions. The P-type source/drain contacts of the P channel transistors have a silicide that is close to the P work function of 5.2 electron volts, and the N-type source/drain contacts of the N channel transistors have a silicide that is close to the N work function of 4.1 electron volts. This provides for a lower resistance at the interface between these source/drain contact regions and the corresponding silicide. These suicides with differing work functions are achieved with implants as needed. For example, for N-type source/drain contacts and a base metal of cobalt, titanium, or nickel, the implanted material is platinum and/or iridium. For the P-type, the implanted material is erbium, yttrium, dysprosium, gadolinium, hafnium, or holmium.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: February 20, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, William J. Taylor, Jr.
  • Patent number: 6849487
    Abstract: A method of forming a conductive structure having a length that is less than the length define by photolithographic patterning. A silicon layer (12) is formed in a MeOx dielectric layer (11) is photolithographically patterned to a predetermined first length. A metal layer (31) is formed conformally to at least the sidewalls of the silicon layer and then is reacted with the silicon to form a metal silicide (41). In particular, metal silicide abutments (411,412) are formed contiguous to sidewalls (421,422) of a reduced conductor (42). The remaining metal layer and the metal silicide are etched away, resulting in a conductor having predetermined second length that is less than the predetermined first length.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: February 1, 2005
    Assignee: Motorola, Inc.
    Inventors: William J. Taylor, Jr., Olubunmi O. Adetutu, Steven G. H. Anderson
  • Patent number: 6849515
    Abstract: A semiconductor process and structure (32) uses a disposable sidewall spacer (42) associated with lightly doped drain (LDD) transistors. The disposable sidewall spacers are efficiently removed by a gaseous fluorine ambient. Either molecular or atomic fluorine gas is used to remove a silicon germanium sidewall spacer with high selectivity to exposed insulating layers. This etch process is also isotropic. An additional benefit of using a gaseous fluorine ambient is incorporation of fluorine in isolation regions (48) surrounding the transistors, thereby reducing the dielectric constant. Improved insulating properties of the isolations regions can allow increased integration.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: February 1, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William J. Taylor, Jr., Cesar M. Garza
  • Patent number: 6594422
    Abstract: A manufacturing technique for making grating features utilizes the etching characteristics for photoresist to provide desirable geometric shapes in close proximity to each other. This results in a grating for optocoupling, which is manufacturable and provides efficient coupling. A silicon waveguide is conveniently achieved using a SOI substrate so that the insulator underlying the silicon provides one material adjoining the silicon with a lower index of refraction than silicon. The top surface of the silicon has the desirable geometric shapes that result also in a lower index of refraction than silicon above the main body of the silicon substrate.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: July 15, 2003
    Assignee: Motorola, Inc.
    Inventors: William J. Taylor, Jr., Wei E. Wu, Sebastian M. Csutak
  • Patent number: 6573160
    Abstract: Techniques for forming gate dielectric layers (702) overlying amorphous substrate materials are presented. In addition, techniques for low temperature processing operations that allow for the use of amorphous silicon in doping operations are presented. The amorphous silicon regions (604, 606) are formed prior to formation of structures included in the gate structure (804) of the semiconductor device, where the gate structures (804) are preferably formed using low temperature operations that allow the amorphous silicon regions (604, 606) to remain in an amorphous state. Source/drain regions (1004, 1006) are formed in the amorphous silicon regions (604, 606), and then the substrate is annealed to recrystallize the amorphous regions.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: June 3, 2003
    Assignee: Motorola, Inc.
    Inventors: William J. Taylor, Jr., Marius Orlowski, David C. Gilmer, Prasad V. Alluri, Christopher C. Hobbs, Michael J. Rendon, Iuval R. Clejan
  • Patent number: 6514808
    Abstract: A transistor device (19) utilizes a high K dielectric (24) between a gate electrode (16) and a substrate (12). The high K dielectric (24) is etched under the gate electrode (16) so that there is an area between the gate electrode (16) and the substrate (12) that is void of high K dielectric (24). The source/drains extensions (28 and 30) are minimized to extend substantially in alignment with the edge of gate dielectric (24) to reduce overlap with the gate dielectric (24). This results in reduced capacitance between the gate and the source/drain extensions. The void areas (20 and 22) between the gate and the substrate (12) may remain void or may be filled with a low K dielectric, or at least a dielectric that is not high K.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: February 4, 2003
    Assignee: Motorola, Inc.
    Inventors: Srikanth B. Samavedam, Christopher C. Hobbs, William J. Taylor, Jr.
  • Publication number: 20030015758
    Abstract: A semiconductor device has a semiconductor region that functions as a channel between two metal conductors. In the semiconductor region and adjacent to the metal conductors are doped regions of an opposite conductivity type to that of the channel that are source and drain regions, which are electrically coupled laterally to the two metal conductors and function as ohmic contacts. The semiconductor region is epitaxially grown through a hole in an insulating layer that underlies the two metal conductors. Under the insulating layer is a semiconductor layer that forms the seed for epitaxially growing the semiconductor layer. The hole is also formed through another relatively thick insulating layer over the two metal conductors.
    Type: Application
    Filed: July 21, 2001
    Publication date: January 23, 2003
    Inventors: William J. Taylor, JR, Bich-Yen Nguyen, David L. O'Meara
  • Patent number: 6475841
    Abstract: A transistor structure includes a retrograde gate structure (112) that is narrower at the end that interfaces with the gate dielectric (120) than it is at the opposite end and method for manufacture of such a structure. The retrograde gate structure (112) is formed by depositing a layer of gate material (104) that has varying composition in the vertical direction. The differentiation in composition causes varying lateral etch rate characteristics along the vertical direction of the gate structure (112) such that increased etching of the gate material (104) occurs near the interface with the gate dielectric layer (102).
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: November 5, 2002
    Assignee: Motorola, Inc.
    Inventors: William J. Taylor, Jr., Srikanth B. Samavedam, Nigel Cave
  • Patent number: 6423632
    Abstract: A semiconductor device and a process for forming the device includes a conductor that overlies an insulating layer. In one embodiment, the conductor includes a first conductive portion, a second conductive portion, and a third conductive portion. The second conductive portion lies between the first and third conductive portions. The first conductive portion includes a first element, and the third conductive portion includes a metal and silicon without a significant amount of the first element. In another embodiment, the conductor is a gate electrode or a capacitor electrode. The conductor includes a first conductive portion, a second conductive portion, a third conductive portion, and a fourth conductive portion. The second conductive portion lies between the first and third conductive portions and has a different composition compared to the first, third, and fourth conductive portion.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: July 23, 2002
    Assignee: Motorola, Inc.
    Inventors: Srikanth B. Samavedam, Philip J. Tobin, William J. Taylor, Jr.
  • Publication number: 20020048910
    Abstract: Techniques for forming gate dielectric layers (702) overlying amorphous substrate materials are presented. In addition, techniques for low temperature processing operations that allow for the use of amorphous silicon in doping operations are presented. The amorphous silicon regions (604, 606) are formed prior to formation of structures included in the gate structure (804) of the semiconductor device, where the gate structures (804) are preferably formed using low temperature operations that allow the amorphous silicon regions (604, 606) to remain in an amorphous state. Source/drain regions (1004, 1006) are formed in the amorphous silicon regions (604, 606), and then the substrate is annealed to recrystallize the amorphous regions.
    Type: Application
    Filed: May 26, 2000
    Publication date: April 25, 2002
    Inventors: William J. Taylor, Jr., Marius Orlowski, David C. Gilmer, Prasad V. Alluri, Christopher C. Hobbs, Michael J. Rendon, Iuval R. Clejan
  • Patent number: 6362057
    Abstract: A conductive layer (14) and a dummy feature (16) are formed over a semiconductor substrate (10) doped with a first dopant type. A spacer (42) is then formed adjacent the dummy feature (16) and is used to define a first patterned feature (92). In one embodiment, substrate regions (90) are doped with a second dopant type that is a same dopant type as the first dopant type. In an alternative embodiment, substrate regions (90) are doped with a second dopant type that is opposite the first dopant type. The dummy feature (16) is then removed and remaining portions of the spacer (100) are used to define a gate electrode (120). The substrate (10) is then doped optionally with a third dopant type and then with a fourth dopant type, the third and fourth dopant types being opposite the first dopant type, to form asymmetrically doped source (172) and drain regions (174) in the semiconductor substrate (10).
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: March 26, 2002
    Assignee: Motorola, Inc.
    Inventors: William J. Taylor, Jr., Suresh Venkatesan, Asanga H. Perera
  • Patent number: 6362071
    Abstract: In accordance with one embodiment of the present invention, a method is disclosed for forming a semiconductor device having an isolation region (601). A dielectric layer (108) is deposited and etched to form isolation regions (102, 605) having top portions that are narrower than their bottom portions, thereby a tapered isolation region is formed. Active regions (601, 603) are formed using an epitaxial process in the regions between the isolation regions. The resulting active regions (601, 603) have a greater amount of surface area near a top portion, than near a bottom portion. Transistors (721, 723) having opposite polarities are formed within the active areas.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: March 26, 2002
    Assignee: Motorola, Inc.
    Inventors: Bich-Yen Nguyen, William J. Taylor, Jr., Philip J. Tobin, David L. O'Meara, Percy V. Gilbert, Yeong-Jyh T. Lii, Victor S. Wang
  • Patent number: 5633186
    Abstract: A process for fabricating a non-volatile memory cell (10) in a semiconductor device includes the formation of a doped region (28) in a semiconductor substrate (40) underlying a floating gate electrode (16) and separated therefrom by a tunnel dielectric layer (44). Stress induced failure of the tunnel dielectric layer (44) is avoided by laterally diffusing dopant atoms under the floating gate electrode (16) after completely fabricating both the floating gate electrode (16) and the underlying tunnel dielectric layer (44).
    Type: Grant
    Filed: August 14, 1995
    Date of Patent: May 27, 1997
    Assignee: Motorola, Inc.
    Inventors: Danny P. C. Shum, Ko-Min Chang, William J. Taylor, Jr.
  • Patent number: 5495674
    Abstract: A knife having a casing and a blade pivotally mounted thereto includes a user actuated button slidably mounted to the casing for producing movement of the blade between fully open and closed terminal positions. The button is disposed on the end of an elongated shaft which fully extends through a spring, pawl, casing, and a blade. The spring and pawl are respectively positioned adjacent the button and between the outwardly facing surface of the casing and the spring. The pawl includes a legged portion which extends into the casing and is fixedly attached to the blade. The pawl is further operatively positioned in relation to a plurality of bosses extending upwardly in longitudinal linear relation from the outwardly facing surface of the casing. As a user slides the button in a predetermined direction, the pawl correspondingly slides and rotates about each successive boss. The sliding, rotating motion of the pawl is directly transferred to the blade, thereby moving the blade between its terminal positions.
    Type: Grant
    Filed: June 24, 1994
    Date of Patent: March 5, 1996
    Assignee: Camillus Cutlery Co.
    Inventor: William J. Taylor, Jr.