Patents by Inventor William M. Green

William M. Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170016817
    Abstract: A method of fabricating a gas sensor on a substrate and a gas sensor fabricated on a substrate that includes optical and electronic components are described. The method includes fabricating a laser to output light over a range of wavelengths within a waveguide, fabricating a splitter to split the light output by the laser to a reference waveguide and to a detection waveguide, fabricating a reference cell to house the reference waveguide and a reference gas. An output of the reference waveguide is coupled to a first optical detector and an output of the detection waveguide is coupled to a second optical detector to identify or quantify an ambient gas.
    Type: Application
    Filed: July 15, 2015
    Publication date: January 19, 2017
    Inventors: Tymon Barwicz, William M. Green, Yves C. Martin, Jason S. Orcutt, Lionel Tombez
  • Publication number: 20170016818
    Abstract: A method of fabricating a gas sensor on a substrate and a gas sensor fabricated on a substrate that includes optical and electronic components are described. The method includes fabricating a laser to output light over a range of wavelengths within a waveguide, fabricating a splitter to split the light output by the laser to a reference waveguide and to a detection waveguide, fabricating a reference cell to house the reference waveguide and a reference gas. An output of the reference waveguide is coupled to a first optical detector and an output of the detection waveguide is coupled to a second optical detector to identify or quantify an ambient gas.
    Type: Application
    Filed: November 23, 2015
    Publication date: January 19, 2017
    Inventors: Tymon Barwicz, William M. Green, Yves C. Martin, Jason S. Orcutt, Lionel Tombez
  • Patent number: 9547125
    Abstract: A method of forming an integrated photonic semiconductor structure having a photodetector and a CMOS device may include forming the CMOS device on a first silicon-on-insulator region, forming a silicon optical waveguide on a second silicon-on-insulator region, and forming a shallow trench isolation (STI) region surrounding the silicon optical waveguide such that the shallow trench isolation electrically isolating the first and second silicon-on-insulator region. Within a first region of the STI region, a first germanium material is deposited adjacent a first side wall of the semiconductor optical waveguide. Within a second region of the STI region, a second germanium material is deposited adjacent a second side wall of the semiconductor optical waveguide, whereby the second side wall opposes the first side wall. The first and second germanium material form an active region that evanescently receives propagating optical signals from the first and second side wall of the semiconductor optical waveguide.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: January 17, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Solomon Assefa, William M. Green, Steven M. Shank, Yurii A. Vlasov
  • Publication number: 20160247944
    Abstract: Approaches for silicon photonics integration are provided. A method includes: forming at least one encapsulating layer over and around a photodetector; thermally crystallizing the photodetector material after the forming the at least one encapsulating layer; and after the thermally crystallizing the photodetector material, forming a conformal sealing layer on the at least one encapsulating layer and over at least one device. The conformal sealing layer is configured to seal a crack in the at least one encapsulating layer. The photodetector and the at least one device are on a same substrate. The at least one device includes a complementary metal oxide semiconductor device or a passive photonics device.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 25, 2016
    Inventors: Solomon Assefa, Tymon Barwicz, William M. Green, Marwan H. Khater, Jessie C. Rosenberg, Steven M. Shank
  • Publication number: 20160181445
    Abstract: Approaches for silicon photonics integration are provided. A method includes: forming at least one encapsulating layer over and around a photodetector; thermally crystallizing the photodetector material after the forming the at least one encapsulating layer; and after the thermally crystallizing the photodetector material, forming a conformal sealing layer on the at least one encapsulating layer and over at least one device. The conformal sealing layer is configured to seal a crack in the at least one encapsulating layer. The photodetector and the at least one device are on a same substrate. The at least one device includes a complementary metal oxide semiconductor device or a passive photonics device.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 23, 2016
    Inventors: Solomon Assefa, Tymon Barwicz, William M. Green, Marwan H. Khater, Jessie C. Rosenberg, Steven M. Shank
  • Patent number: 9368653
    Abstract: Approaches for silicon photonics integration are provided. A method includes: forming at least one encapsulating layer over and around a photodetector; thermally crystallizing the photodetector material after the forming the at least one encapsulating layer; and after the thermally crystallizing the photodetector material, forming a conformal sealing layer on the at least one encapsulating layer and over at least one device. The conformal sealing layer is configured to seal a crack in the at least one encapsulating layer. The photodetector and the at least one device are on a same substrate. The at least one device includes a complementary metal oxide semiconductor device or a passive photonics device.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: June 14, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, Tymon Barwicz, William M. Green, Marwan H. Khater, Jessie C. Rosenberg, Steven M. Shank
  • Patent number: 9304335
    Abstract: A device includes a laterally diffused metal-oxide-semiconductor (LDMOS) device integrated with an optical modulator. An optical waveguide of the optical modulator includes a silicon-containing structure in a drift region of the LDMOS device.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: April 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, William M. Green, Michael J. Hauser, Edward W. Kiewra, Xuefeng Liu, Steven M. Shank
  • Publication number: 20160018677
    Abstract: A device includes a laterally diffused metal-oxide-semiconductor (LDMOS) device integrated with an optical modulator. An optical waveguide of the optical modulator includes a silicon-containing structure in a drift region of the LDMOS device.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 21, 2016
    Inventors: John J. ELLIS-MONAGHAN, William M. GREEN, Michael J. HAUSER, Edward W. KIEWRA, Xuefeng LIU, Steven M. SHANK
  • Patent number: 9236287
    Abstract: Photonic SOI devices are formed by lateral epitaxy of a deposited non-crystalline semiconductor layer over a localized buried oxide created by a trench isolation process or by thermal oxidation. Specifically, and after forming a trench into a semiconductor substrate, the trench can be filled with an oxide by a deposition process or a thermal oxidation can be performed to form a localized buried oxide within the semiconductor substrate. In some embodiments, the oxide can be recessed to expose sidewall surfaces of the semiconductor substrate. Next, a non-crystalline semiconductor layer is formed and then a solid state crystallization is preformed which forms a localized semiconductor-on-insulator layer. During the solid state crystallization process portions of the non-crystalline semiconductor layer that are adjacent exposed sidewall surfaces of the substrate are crystallized.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDIES INC.
    Inventors: Solomon Assefa, William M. Green, Marwan H. Khater, Yurii A. Vlasov
  • Patent number: 9229164
    Abstract: A method of forming an integrated photonic semiconductor structure having a photodetector and a CMOS device may include forming the CMOS device on a first silicon-on-insulator region, forming a silicon optical waveguide on a second silicon-on-insulator region, and forming a shallow trench isolation (STI) region surrounding the silicon optical waveguide such that the shallow trench isolation electrically isolates the first and second silicon-on-insulator region. Within the STI region, a germanium material is deposited adjacent an end facet of the semiconductor optical waveguide. The germanium material forms an active region that receives propagating optical signals from the end facet of the semiconductor optical waveguide.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: January 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Solomon Assefa, William M. Green, Steven M. Shank, Yurii A. Vlasov
  • Publication number: 20150348827
    Abstract: Photonic devices are created by laterally growing a semiconductor material (i.e., a localized semiconductor-on-insulator layer) over a localized buried oxide (BOX) created in a semiconductor by either a trench isolation process or thermal oxidation. In one embodiment, and after trench formation in a semiconductor substrate, the trench is filled with oxide to create a localized BOX. The top surface of the BOX is recessed to depth below the topmost surface of the semiconductor substrate to expose sidewall surfaces of the semiconductor substrate within each trench. A semiconductor material is then epitaxially grown from the exposed sidewall surfaces of the semiconductor substrate.
    Type: Application
    Filed: August 10, 2015
    Publication date: December 3, 2015
    Inventors: Solomon Assefa, William M. Green, Marwan H. Khater, Yurri A. Vlasov
  • Patent number: 9170439
    Abstract: A method for controlling an electro-optic modulator device includes measuring a performance metric of the device to define a first measured performance value, and changing a state of a first tuning portion of the device to connect the first tuning portion to ground.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: October 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, William M. Green, Alberto Valdes Garcia
  • Publication number: 20150268417
    Abstract: A method of forming an integrated photonic semiconductor structure having a photodetector and a CMOS device may include forming the CMOS device on a first silicon-on-insulator region, forming a silicon optical waveguide on a second silicon-on-insulator region, and forming a shallow trench isolation (STI) region surrounding the silicon optical waveguide such that the shallow trench isolation electrically isolating the first and second silicon-on-insulator region. Within a first region of the STI region, a first germanium material is deposited adjacent a first side wall of the semiconductor optical waveguide. Within a second region of the STI region, a second germanium material is deposited adjacent a second side wall of the semiconductor optical waveguide, whereby the second side wall opposes the first side wall. The first and second germanium material form an active region that evanescently receives propagating optical signals from the first and second side wall of the semiconductor optical waveguide.
    Type: Application
    Filed: April 23, 2015
    Publication date: September 24, 2015
    Inventors: SOLOMON ASSEFA, WILLIAM M. GREEN, STEVEN M. SHANK, YURII A. VLASOV
  • Patent number: 9134479
    Abstract: An optical demultiplexing device includes a first portion operative to receive an input optical signal having a first polarization, a second polarization and multiple channels, and split the input optical signal into a first optical signal having the first polarization and a second optical signal having the first polarization, and an optical demultiplexing portion communicatively connected to the polarization splitter portion, the optical demultiplexing portion operative to receive a combination of the first optical signal and the second optical signal, and output each channel of the first optical signal and the second optical signal to a photodetector device corresponding to each channel.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: September 15, 2015
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Douglas M. Gill, William M. Green
  • Patent number: 9117946
    Abstract: A method of forming an integrated photonic semiconductor structure having a photodetector and a CMOS device may include forming the CMOS device on a first silicon-on-insulator region, forming a silicon optical waveguide on a second silicon-on-insulator region, and forming a shallow trench isolation (STI) region surrounding the silicon optical waveguide such that the shallow trench isolation electrically isolating the first and second silicon-on-insulator region. Within a first region of the STI region, a first germanium material is deposited adjacent a first side wall of the semiconductor optical waveguide. Within a second region of the STI region, a second germanium material is deposited adjacent a second side wall of the semiconductor optical waveguide, whereby the second side wall opposes the first side wall. The first and second germanium material form an active region that evanescently receives propagating optical signals from the first and second side wall of the semiconductor optical waveguide.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: August 25, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, William M. Green, Steven M. Shank, Yurii A. Vlasov
  • Patent number: 9105686
    Abstract: Photonic devices are created by laterally growing a semiconductor material (i.e., a localized semiconductor-on-insulator layer) over a localized buried oxide (BOX) created in a semiconductor by either a trench isolation process or thermal oxidation. In one embodiment, and after trench formation in a semiconductor substrate, the trench is filled with oxide to create a localized BOX. The top surface of the BOX is recessed to depth below the topmost surface of the semiconductor substrate to expose sidewall surfaces of the semiconductor substrate within each trench. A semiconductor material is then epitaxially grown from the exposed sidewall surfaces of the semiconductor substrate.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, William M. Green, Marwan H. Khater, Yurri A. Vlasov
  • Patent number: 9057832
    Abstract: A method for fabricating an optical modulator includes forming n-type layer, a first oxide portion on a portion of the n-type layer, and a second oxide portion on a second portion of the n-type layer, patterning a first masking layer over the first oxide portion, portions of a planar surface of the n-type layer, and portions of the second oxide portion, implanting p-type dopants in the n-type layer to form a first p-type region and a second p-type region, removing the first masking layer, patterning a second masking layer over the first oxide portion, a portion of the first p-type region, and a portion of the n-type layer, and implanting p-type dopants in exposed portions of the n-type layer, exposed portions of the first p-type region, and regions of the n-type layer and the second p-type region disposed between the substrate and the second oxide portion.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: William M. Green, Jessie C. Rosenberg, Yurii Vlasov
  • Patent number: 9042684
    Abstract: An electro-optical modulator device includes an optical signal path partially defined by a waveguide portion, a radio frequency (RF) signal path partially defined by a conductive line portion, an interaction region where an RF signal propagating in the RF signal path interacts with an optical signal propagating in the optical signal path to modulate the optical signal, and a first tuning portion arranged proximate to the conductive line portion, the first tuning portion including a conductive portion and a switch portion operative to connect the conductive portion to ground.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Douglas M. Gill, William M. Green, Alberto Valdes Garcia
  • Patent number: 8948548
    Abstract: A method for demultiplexing an optical signal includes receiving a multi polarization optical signal, separating the multi polarization optical signal into a first polarization optical signal and a second polarization optical signal, rotating a polarization of the first polarization optical signal to match a polarization of the second polarization optical signal, routing the first polarization optical signal and the second polarization optical signal to a common demultiplexing device, outputting a channel of the first polarization optical signal and the second polarization optical signal to a common photodetector.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Douglas M. Gill, William M. Green
  • Patent number: 8942519
    Abstract: A polarization splitter and rotator of a wafer chip, an opto-electronic device and method of use is disclosed. The first waveguide of the wafer chip is configured to receive an optical signal from an optical device and propagate a transverse electric eigenstate of the received optical signal. The second waveguide is configured to receive a transverse magnetic eigenstate of the received optical signal from the first waveguide. The second waveguide includes a splitter end, a middle section and a rotator end, wherein the splitter end includes a layer of polycrystalline silicon, a layer of silicon oxide and a layer of silicon nitride, the rotated end includes a layer single crystal silicon, a layer silicon oxide and a layer of silicon nitride, and the middle section includes layers of single crystal silicon, silicon oxide polycrystalline silicon and silicon nitride.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tymon Barwicz, Douglas M. Gill, William M. Green, Marwan H. Khater, Yurii A. Vlasov