Patents by Inventor William M. Green

William M. Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8592743
    Abstract: A transmission line and method for implementing includes a plurality of segments forming an electrical path and a continuous optical path passing through the segments. Discrete inductors are formed between and connect adjacent segments. The inductors are formed in a plurality of metal layers of an integrated circuit to balance capacitance of an optical modulator which includes the transmission line to achieve a characteristic impedance for the transmission line.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: William M. Green, Alexander V. Rylyakov, Clint S. Schow, Yurii A. Vlasov
  • Patent number: 8530821
    Abstract: A transmission line and method for implementing includes a plurality of segments forming an electrical path and a continuous optical path passing through the segments. Discrete inductors are formed between and connect adjacent segments. The inductors are formed in a plurality of metal layers of an integrated circuit to balance capacitance of an optical modulator which includes the transmission line to achieve a characteristic impedance for the transmission line.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: September 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: William M. Green, Alexander V. Rylyakov, Clint S. Schow, Yurii A. Vlasov
  • Patent number: 8526090
    Abstract: An optical modulator device includes a body portion operative to propagate an optical mode along a longitudinal axis of the body portion, the body portion comprising a first layer disposed on a second layer, wherein the first layer includes a first p-type doped region adjacent to a first n-type doped region along the longitudinal axis of the body portion, and the second layer includes a second n-type doped region disposed on the first p-type doped region and a second p-type doped region adjacent to the second n-type doped region along the longitudinal axis of the body portion, the second p-type doped region disposed on the first n-type doped region.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: September 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: William M. Green, Jessie C. Rosenberg, Yurii A. Vlasov
  • Patent number: 8363686
    Abstract: Current may be passed through an n-doped semiconductor region, a recessed metal semiconductor alloy portion, and a p-doped semiconductor region so that the diffusion of majority charge carriers in the doped semiconductor regions transfers heat from or into the semiconductor waveguide through Peltier-Seebeck effect. Further, a temperature control device may be configured to include a metal semiconductor alloy region located in proximity to an optoelectronic device, a first semiconductor region having a p-type doping, and a second semiconductor region having an n-type doping. The temperature of the optoelectronic device may thus be controlled to stabilize the performance of the optoelectronic device.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, William M. Green, Younghee Kim, Joris Van Campenhout, Yurii Vlasov
  • Publication number: 20120330625
    Abstract: A mode-selective add/drop unit for a mode division de/multiplexing device includes an optical ADU waveguide adapted for coupling to an input optical waveguide. The optical ADU waveguide includes at least one region providing optical signal coupling between the ADU waveguide and a multi-mode waveguide; and, one or more phase matching regions for controlling a relative or absolute phase difference between an electromagnetic wave (EMW) carried in the ADU waveguide and the multi-mode waveguide. The mode-selective add/drop unit may further include a transition region connecting the coupling region and a phase matching region, wherein a shape of a transition region is governed by a polynomial function, exponential function, logarithmic function, trigonometric function or, any combination of these functions.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Saeed Bagheri, William M. Green, Petar Pepeljugoski, Yurii A. Vlasov
  • Publication number: 20120319805
    Abstract: A transmission line and method for implementing includes a plurality of segments forming an electrical path and a continuous optical path passing through the segments. Discrete inductors are formed between and connect adjacent segments. The inductors are formed in a plurality of metal layers of an integrated circuit to balance capacitance of an optical modulator which includes the transmission line to achieve a characteristic impedance for the transmission line.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 20, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: WILLIAM M. GREEN, Alexander V. Rylyakov, Clint S. Schow, Yurii A. Vlasov
  • Publication number: 20120125916
    Abstract: Current may be passed through an n-doped semiconductor region, a recessed metal semiconductor alloy portion, and a p-doped semiconductor region so that the diffusion of majority charge carriers in the doped semiconductor regions transfers heat from or into the semiconductor waveguide through Peltier-Seebeck effect. Further, a temperature control device may be configured to include a metal semiconductor alloy region located in proximity to an optoelectronic device, a first semiconductor region having a p-type doping, and a second semiconductor region having an n-type doping. The temperature of the optoelectronic device may thus be controlled to stabilize the performance of the optoelectronic device.
    Type: Application
    Filed: February 1, 2012
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, William M. Green, Young-hee Kim, Joris Van Campenhout, Yurii A. Vlasov
  • Patent number: 8178382
    Abstract: A vertical stack of a first silicon germanium alloy layer, a second epitaxial silicon layer, a second silicon germanium layer, and a germanium layer are formed epitaxially on a top surface of a first epitaxial silicon layer. The second epitaxial silicon layer, the second silicon germanium layer, and the germanium layer are patterned and encapsulated by a dielectric cap portion, a dielectric spacer, and the first silicon germanium layer. The silicon germanium layer is removed between the first and second silicon layers to form a silicon germanium mesa structure that structurally support an overhanging structure comprising a stack of a silicon portion, a silicon germanium alloy portion, a germanium photodetector, and a dielectric cap portion. The germanium photodetector is suspended by the silicon germanium mesa structure and does not abut a silicon waveguide. Germanium diffusion into the silicon waveguide and defect density in the germanium detector are minimized.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: May 15, 2012
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Jack O. Chu, Martin M. Frank, William M. Green, Young-hee Kim, George G. Totir, Joris Van Campenhout, Yurri A. Vlasov, Ying Zhang
  • Patent number: 8139904
    Abstract: A method of implementing optical deflection switching includes directing a tuning operation at a specific region of coupled optical resonators coupled to an input port, a first output port and a second output port, the coupled optical resonator including a plurality of cascaded unit cells; wherein the tuning operation interrupts a resonant coupling between one or more of the unit cells of the coupled resonators so as to cause an input optical signal from the input port to be directed from the first output port to the second output port.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: William M. Green, Fengnian Xia, Yurii Vlasov
  • Patent number: 8111724
    Abstract: Current may be passed through an n-doped semiconductor region, a recessed metal semiconductor alloy portion, and a p-doped semiconductor region so that the diffusion of majority charge carriers in the doped semiconductor regions transfers heat from or into the semiconductor waveguide through Peltier-Seebeck effect. Further, a temperature control device may be configured to include a metal semiconductor alloy region located in proximity to an optoelectronic device, a first semiconductor region having a p-type doping, and a second semiconductor region having an n-type doping. The temperature of the optoelectronic device may thus be controlled to stabilize the performance of the optoelectronic device.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: February 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, William M. Green, Younghee Kim, Joris Van Campenhout, Yurii Vlasov
  • Publication number: 20110298561
    Abstract: A transmission line and method for implementing includes a plurality of segments forming an electrical path and a continuous optical path passing through the segments. Discrete inductors are formed between and connect adjacent segments. The inductors are formed in a plurality of metal layers of an integrated circuit to balance capacitance of an optical modulator which includes the transmission line to achieve a characteristic impedance for the transmission line.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 8, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: WILLIAM M. GREEN, Alexander V. Rylyakov, Clint L. Schow, Yurii A. Vlasov
  • Publication number: 20110143482
    Abstract: A vertical stack of a first silicon germanium alloy layer, a second epitaxial silicon layer, a second silicon germanium layer, and a germanium layer are formed epitaxially on a top surface of a first epitaxial silicon layer. The second epitaxial silicon layer, the second silicon germanium layer, and the germanium layer are patterned and encapsulated by a dielectric cap portion, a dielectric spacer, and the first silicon germanium layer. The silicon germanium layer is removed between the first and second silicon layers to form a silicon germanium mesa structure that structurally support an overhanging structure comprising a stack of a silicon portion, a silicon germanium alloy portion, a germanium photodetector, and a dielectric cap portion. The germanium photodetector is suspended by the silicon germanium mesa structure and does not abut a silicon waveguide. Germanium diffusion into the silicon waveguide and defect density in the germanium detector are minimized.
    Type: Application
    Filed: January 13, 2011
    Publication date: June 16, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, Jack O. Chu, Martin M. Frank, William M. Green, Young-hee Kim, George G. Totir, Joris Van Campenhout, Yurri A. Vlasov, Ying Zhang
  • Patent number: 7902620
    Abstract: A vertical stack of a first silicon germanium alloy layer, a second epitaxial silicon layer, a second silicon germanium layer, and a germanium layer are formed epitaxially on a top surface of a first epitaxial silicon layer. The second epitaxial silicon layer, the second silicon germanium layer, and the germanium layer are patterned and encapsulated by a dielectric cap portion, a dielectric spacer, and the first silicon germanium layer. The silicon germanium layer is removed between the first and second silicon layers to form a silicon germanium mesa structure that structurally support an overhanging structure comprising a stack of a silicon portion, a silicon germanium alloy portion, a germanium photodetector, and a dielectric cap portion. The germanium photodetector is suspended by the silicon germanium mesa structure and does not abut a silicon waveguide. Germanium diffusion into the silicon waveguide and defect density in the germanium detector are minimized.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: March 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Jack O. Chu, Martin M. Frank, William M. Green, Young-hee Kim, George G. Totir, Joris Van Campenhout, Yurii A. Vlasov, Ying Zhang
  • Publication number: 20110049894
    Abstract: An electricity generating assembly includes a first turbine having a first plurality of fan blades and a second turbine having a second plurality of fan blades. A first rotor is connected to the first turbine and rotatable with the first turbine. A second rotor is connected to the second turbine and is rotatable with the second turbine. The first and second turbines are rotatably connected to a shaft such that rotation of the first and second turbines cause rotation of the shaft, wherein the first and second turbines rotate in opposite directions.
    Type: Application
    Filed: October 19, 2010
    Publication date: March 3, 2011
    Inventor: William M. Green
  • Publication number: 20110007761
    Abstract: Current may be passed through an n-doped semiconductor region, a recessed metal semiconductor alloy portion, and a p-doped semiconductor region so that the diffusion of majority charge carriers in the doped semiconductor regions transfers heat from or into the semiconductor waveguide through Peltier-Seebeck effect. Further, a temperature control device may be configured to include a metal semiconductor alloy region located in proximity to an optoelectronic device, a first semiconductor region having a p-type doping, and a second semiconductor region having an n-type doping. The temperature of the optoelectronic device may thus be controlled to stabilize the performance of the optoelectronic device.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 13, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, William M. Green, Young-hee Kim, Joris Van Campenhout, Yurii A. Vlasov
  • Publication number: 20110002576
    Abstract: A thermally switched Silicon-On-Insulator (SOI) photo electronic device includes a silicon layer including an optical waveguide and a silicide heating element horizontally adjacent to the waveguide. The waveguide has a refractive index that changes with heat applied to the waveguide.
    Type: Application
    Filed: September 4, 2007
    Publication date: January 6, 2011
    Applicant: International Business Machines Corporation
    Inventors: William M. Green, Hendrik F. Hamann, Yurii A. Vlasov
  • Patent number: 7816802
    Abstract: A electricity generating assembly includes a plurality of rotatable fan blades. A generator is connected to the plurality of fan blades to convert rotation of the fan blades into electricity. A plurality of shutters surround the plurality of fan blades. The plurality of shutters are movable between a first position in which said plurality of shutters are open to allow access to the plurality of fan blades and a second position in which the plurality of shutters are closed to prevent access to the plurality of fan blades. A motor is connected to the plurality of shutters to move the plurality of shutters between the first and second positions.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: October 19, 2010
    Inventor: William M Green
  • Publication number: 20100111470
    Abstract: An optical switch includes a plurality of optical interferometric structures is serially connected between at least one optical input node and two optical output nodes. A primary waveguide directly connects an optical input node and a first optical output node. A complementary waveguide, which is directly connected to a second optical output node, is evanescently coupled with the primary waveguide in a pair of optically coupled sections provided in each optical interferometric structure. Each optical interferometric structure also includes a pair of decoupled sections, which includes a primary decoupled section embedding a portion of the primary waveguide and a complementary decoupled section which includes a portion of the complementary waveguide. The complementary decoupled section is embedded in a phase tuning structure that allows modulation of the phase of the optical signal passing through.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, William M. Green, Younghee Kim, Joris Van Campenhout, Yurii Vlasov
  • Publication number: 20100038736
    Abstract: A vertical stack of a first silicon germanium alloy layer, a second epitaxial silicon layer, a second silicon germanium layer, and a germanium layer are formed epitaxially on a top surface of a first epitaxial silicon layer. The second epitaxial silicon layer, the second silicon germanium layer, and the germanium layer are patterned and encapsulated by a dielectric cap portion, a dielectric spacer, and the first silicon germanium layer. The silicon germanium layer is removed between the first and second silicon layers to form a silicon germanium mesa structure that structurally support an overhanging structure comprising a stack of a silicon portion, a silicon germanium alloy portion, a germanium photodetector, and a dielectric cap portion. The germanium photodetector is suspended by the silicon germanium mesa structure and does not abut a silicon waveguide. Germanium diffusion into the silicon waveguide and defect density in the germanium detector are minimized.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Applicant: International Business Machines Corporation
    Inventors: Solomon Assefa, Jack O. Chu, Martin M. Frank, William M. Green, Young-hee Kim, George G. Totir, Joris Van Campenhout, Yurii A. Vlasov, Ying Zhang
  • Publication number: 20090304327
    Abstract: A method of implementing optical deflection switching includes directing a tuning operation at a specific region of coupled optical resonators coupled to an input port, a first output port and a second output port, the coupled optical resonator including a plurality of cascaded unit cells; wherein the tuning operation interrupts a resonant coupling between one or more of the unit cells of the coupled resonators so as to cause an input optical signal from the input port to be directed from the first output port to the second output port.
    Type: Application
    Filed: September 18, 2007
    Publication date: December 10, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William M. Green, Fengnian Xia, Yurii Vlasov