Patents by Inventor William P. Taylor

William P. Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10488458
    Abstract: Methods and apparatus for providing an integrated circuit having a drive current source, a magnetic sensing element coupled to the drive current source, the magnetic sensing element having first and second differential outputs, and first and second current elements to provide respective currents in relation to the drive current source, wherein the first current element is coupled to the first differential output and the second current element is coupled to the second differential output. In illustrative embodiments, an IC output can output a voltage corresponding to the currents of the first and second current elements.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: November 26, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Shaun D. Milano, Georges El Bacha, Michael C. Doogue, David J. Haas, Gregory Delmain, Michael Gaboury, William P. Taylor
  • Publication number: 20190285667
    Abstract: Systems and methods described herein are directed towards integrating a shield layer into a current sensor to shield a magnetic field sensing element and associated circuitry in the current sensor from electrical, voltage, or electrical transient noise. In an embodiment, a shield layer may be disposed along at least one surface of a die supporting a magnetic field sensing element. The shield layer may be disposed in various arrangements to shunt noise caused by a parasitic coupling between the magnetic field sensing element and the current carrying conductor away from the magnetic field sensing element.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 19, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Shaun D. Milano, Bryan Cadugan, Michael C. Doogue, Alexander Latham, William P. Taylor, Harianto Wong, Sundar Chetlur
  • Patent number: 10408892
    Abstract: In one aspect, a magnetic field sensor is configured to detect a ferromagnetic object. The magnetic field sensor includes a magnet that includes two North regions and two South regions configured to generate opposing directions of magnetization to form a magnetic flux. The magnetic field sensor also includes a magnetic field sensing element configured to generate an is output signal responsive to changes in the magnetic flux caused by movement of the ferromagnetic object.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: September 10, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Paul David, William P. Taylor
  • Publication number: 20190265292
    Abstract: Methods and apparatus for an integrated circuit having first and second domains with an insulative material electrically isolating the first and second domains. A conductive shield is disposed between the first and second domains and a current sensor has at least one magnetoresistive element proximate the shield to detect current flow in the shield due to breakdown of the insulative material.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Robert A. Briano, William P. Taylor
  • Patent number: 10352969
    Abstract: Systems and methods described herein are directed towards integrating a shield layer into a current sensor to shield a magnetic field sensing element and associated circuitry in the current sensor from electrical, voltage, or electrical transient noise. In an embodiment, a shield layer may be disposed along at least one surface of a die supporting a magnetic field sensing element. The shield layer may be disposed in various arrangements to shunt noise caused by a parasitic coupling between the magnetic field sensing element and the current carrying conductor away from the magnetic field sensing element.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: July 16, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Shaun D. Milano, Bryan Cadugan, Michael C. Doogue, Alexander Latham, William P. Taylor, Harianto Wong, Sundar Chetlur
  • Patent number: 10330745
    Abstract: A magnetic field sensor includes a plurality of magnetoresistance elements, each having at least one characteristic selected to provide a respective, different response to an applied magnetic field, wherein each of the plurality of magnetoresistance elements is coupled in parallel. Illustrative characteristics selected to provide the respective responses include dimensions and/or construction parameters such as materials, layer thickness and order, and spatial relationship of the magnetoresistance element to the applied magnetic field. A method includes providing each of a plurality of magnetoresistance elements with at least one characteristic selected to provide a respective, different response to an applied magnetic field, wherein each of the plurality of magnetoresistance elements is coupled in parallel.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: June 25, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Jeffrey Eagen, William P. Taylor
  • Patent number: 10333055
    Abstract: Methods for providing a sensor integrated circuit package including employing a conductive leadframe and forming a non-conductive die paddle in relation to the leadframe. The method can further include placing a die on the non-conductive die paddle to form an assembly, forming at least one electrical connection between the die and the leadframe, and overmolding the assembly to form an integrated circuit package.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: June 25, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Shaun D. Milano, Michael C. Doogue, William P. Taylor
  • Publication number: 20190179357
    Abstract: A joystick assembly for use with a device including a joystick surface and a first magnet having north and south magnetic poles includes a second magnet having north and south magnetic poles and a movable elongated shaft having first and second opposing ends arranged along a major axis of the shaft. The first end of the shaft is coupled to the second magnet such that movement of the shaft results in movement of the second magnet relative to the first magnet such that a line between centers of the north and south magnetic poles of the second magnet is movable relative to a line between the north and south magnetic poles of the first magnet. An attraction of the second magnet to the first magnet results in a restoring force upon the shaft, and the shaft and the second magnet are removable from the joystick surface.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 13, 2019
    Applicant: ALLEGRO MICROSYSTEMS, LLC
    Inventors: Ali Husain Yusuf Sirohiwala, William P. Taylor, Katherine Shamberger
  • Publication number: 20190157465
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead.
    Type: Application
    Filed: January 21, 2019
    Publication date: May 23, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
  • Publication number: 20190109072
    Abstract: An integrated circuit package includes a lead frame having a first surface, a second opposing surface, at least one die attach portion configured to support at least one die, and a plurality of leads, wherein at least one of the leads has a raised feature extending along a portion of a length of the lead.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 11, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Paul A. David, William P. Taylor
  • Patent number: 10254103
    Abstract: A magnetic field sensor for sensing motion of a ferromagnetic object comprises a substrate. The substrate includes first and second major surfaces, each having a width dimension and a length dimension. The magnetic field sensor further comprises a magnet. The magnet includes a first major surface proximate to the substrate, the first major surface of the magnet heaving a width and a length, and a second major surface. The magnetic field sensor further includes first and second magnetic field sensing dements. The first magnetic field sensing element and the second magnetic field sensing element are positioned beyond respective ends of the width of the magnet. The second magnetic field sensing element is substantially farther from the ferromagnetic object than the first magnetic field sensing element. A line passing through the first and second magnetic field sensing elements is perpendicular to the magnet axis.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 9, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: William P. Taylor, P. Karl Scheller, Paul A. David
  • Patent number: 10248154
    Abstract: A joystick assembly for use with a device including a joystick surface and a first magnet having north and south magnetic poles includes a second magnet having north and south magnetic poles and a movable elongated shaft having first and second opposing ends arranged along a major axis of the shaft. The first end of the shaft is coupled to the second magnet such that movement of the shaft results in movement of the second magnet relative to the first magnet such that a line between centers of the north and south magnetic poles of the second magnet is movable relative to a line between the north and south magnetic poles of the first magnet. An attraction of the second magnet to the first magnet results in a restoring force upon the shaft, and the shaft and the second magnet are removable from the joystick surface.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: April 2, 2019
    Assignee: ALLEGRO MICROSYSTEMS, LLC
    Inventors: Ali Husain Yusuf Sirohiwala, William P. Taylor, Katherine Shamberger
  • Patent number: 10234513
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die supporting a magnetic field sensing element, a non-conductive mold material enclosing the die and a portion of the lead frame, a ferromagnetic mold material secured to the non-conductive mold material and a securing mechanism to securely engage the mold materials. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet. The ferromagnetic mold material may be tapered and includes a non-contiguous central region, as may be an aperture or may contain the non-conductive mold material or an overmold material. Further embodiments include die up, lead on chip, and flip-chip arrangements, wafer level techniques to form the concentrator or bias magnet, integrated components, such as capacitors, on the lead frame, and a bias magnet with one or more channels to facilitate overmolding.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: March 19, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Andreas P. Friedrich, Paul David, Marie-Adelaide Lo, Eric Burdette, Eric Shoemaker, Michael C. Doogue
  • Patent number: 10230006
    Abstract: A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. An electromagnetic suppressor comprising a ferromagnetic material encloses a passive device spaced from the non-conductive mold material and coupled to a plurality of leads.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: March 12, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Paul A. David, P. Karl Scheller, Andreas P. Friedrich
  • Publication number: 20190067562
    Abstract: Methods and apparatus for a signal isolator having a dielectric interposer supporting first and second die each having a magnetic field sensing element. A first signal path extends from the first die to the second die and a second signal path extends from the second die to the first die. In embodiments, the first signal path is located in the interposer and includes a first coil to generate a magnetic field and the second signal path is located in the interposer and includes a second coil to generate a magnetic filed. The first coil is located in relation to the second magnetic field sensing element of the second die and the second coil is located in relation to the first magnetic field sensing element of the first die.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 28, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Sundar Chetlur, Harianto Wong, Maxim Klebanov, William P. Taylor, Michael C. Doogue
  • Patent number: 10215550
    Abstract: Methods and apparatus for a magnetic sensor including an elliptical magnet to generate substantially circular concentric zones of similar flux density in a plane over and parallel to a surface of the magnet. The sensor can include a sensing element disposed a selected distance from the magnet and a substrate containing circuitry to process a signal from the sensing element to provide a sensor output.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: February 26, 2019
    Assignee: ALLEGRO MICROSYSTEMS, LLC
    Inventors: Ryan Metivier, William P. Taylor
  • Publication number: 20190049527
    Abstract: A magnetic field sensor includes a lead frame, a passive component, semiconductor die supporting a magnetic field sensing element and attached to the lead frame, a non-conductive mold material enclosing the die and at least a portion of the lead frame, and a ferromagnetic mold material secured to a portion of the non-conductive mold material. The lead frame has a recessed region and the passive component is positioned in the recessed region. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 14, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Ravi Vig, William P. Taylor, Andreas P. Friedrich, Paul A. David, Marie-Adelaide Lo, Eric Burdette, Eric G. Shoemaker, Michael C. Doogue
  • Publication number: 20190033096
    Abstract: A magnetic field sensor has a plurality of magnetic field sensing elements and operates as a motion detector for sensing a rotation or other movement of a target object.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 31, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Paul A. David, William P. Taylor
  • Publication number: 20190018081
    Abstract: A magnetic field sensor includes a plurality of magnetoresistance elements, each having at least one characteristic selected to provide a respective, different response to an applied magnetic field, wherein each of the plurality of magnetoresistance elements is coupled in parallel. Illustrative characteristics selected to provide the respective responses include dimensions and/or construction parameters such as materials, layer thickness and order, and spatial relationship of the magnetoresistance element to the applied magnetic field. A method includes providing each of a plurality of magnetoresistance elements with at least one characteristic selected to provide a respective, different response to an applied magnetic field, wherein each of the plurality of magnetoresistance elements is coupled in parallel.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 17, 2019
    Applicant: Allegro MicroSystems, LLC
    Inventors: Jeffrey Eagen, William P. Taylor
  • Patent number: 10162020
    Abstract: In one aspect, a Hall Effect sensing element includes a Hall plate having a thickness less than about 100 nanometers an adhesion layer directly in contact with the Hall plate and having a thickness in a range about 0.1 nanometers to 5 nanometers. In another aspect, a sensor includes a Hall Effect sensing element. The Hall Effect sensing element includes a substrate that includes one of a semiconductor material or an insulator material, an insulation layer in direct contact with the substrate, an adhesion layer having a thickness in a range of about 0.1 nanometers to 5 nanometers and in direct contact with the insulation layer and a Hall plate in direct contact with the adhesion layer and having a thickness less than about 100 nanometers.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: December 25, 2018
    Assignee: Allegro MicroSystems, LLC
    Inventors: William P. Taylor, Harianto Wong