Patents by Inventor William R. Tonti

William R. Tonti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6700164
    Abstract: In order to divert damaging currents into an electrostatic discharge (ESD) protection device during an ESD event, a tungsten wire resistor is incorporated into a current path connected in parallel with the ESD protection circuitry. The tungsten wire resistor has linear current-voltage (IV) characteristics at low currents, and non-linear IV characteristics at high current levels. The width and length of the resistor is chosen so that the resistor experiences significant self-heating caused by the higher currents generated by the ESD event. At a higher current level, the resistor becomes hot and its resistance increases dramatically. As a result the voltage drop across it increases thus diverting excess current into the parallel connected ESD protection circuitry. This limits the current through the resistor and thereby protects circuit elements in series with the resistor.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: March 2, 2004
    Assignee: International Business Machines Corporation
    Inventors: Ciaran J. Brennan, Kevin A. Duncan, William R. Tonti, Steven H. Voldman
  • Publication number: 20040036118
    Abstract: The present invention provides methods for fabrication of fin-type field effect transistors (FinFETs) and thick-body devices on the same chip using common masks and steps to achieve greater efficiency than prior methods. The reduction in the number of masks and steps is achieved by using common masks and steps with several scaling strategies. In one embodiment, the structure normally associated with a FinFET is created on the side of a thick silicon mesa, the bulk of which is doped to connect with a body contact on the opposite side of the mesa. The invention also includes FinFETs, thick-body devices, and chips fabricated by the methods.
    Type: Application
    Filed: August 26, 2002
    Publication date: February 26, 2004
    Applicant: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Jeffrey S. Brown, David M. Fried, Robert J. Gauthler, Edward J. Nowak, Jed H. Rankin, William R. Tonti
  • Publication number: 20040036091
    Abstract: A programmable element that has a first diode having an electrode and a first insulator disposed between the substrate and said electrode of said first device, said first insulator having a first value of a given characteristic, and an FET having an electrode and a second insulator disposed between the substrate and said electrode of said second device, said second insulator having a second value of said given characteristic that is different from said first value. The electrodes of the diode and the FET are coupled to one another, and a source of programming energy is coupled to the diode to cause it to permanently decrease in resistivity when programmed. The programmed state of the diode is indicated by a current in the FET, which is read by a sense latch. Thus a small resistance change in the diode translates to a large signal gain/change in the latch. This allows the diode to be programmed at lower voltages.
    Type: Application
    Filed: August 29, 2003
    Publication date: February 26, 2004
    Inventors: John A. Fifield, Russell J. Houghton, William R. Tonti
  • Publication number: 20040004268
    Abstract: Standard photolithography is used to pattern and fabricate a final polysilicon wafer imaged structure which is smaller than normal allowable photo-lithographic minimum dimensions. Three different methods are provided to produce such sub-minimum dimension structures, a first method uses a photolithographic mask with a sub-minimum space between minimum size pattern features of the mask, a second method uses a photolithographic mask with a sub-minimum widthwise jog or offset between minimum size pattern features of the mask, and a third method is a combination of the first and second methods.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 8, 2004
    Applicant: International Business Machines Corporation
    Inventors: Jeffrey S. Brown, Robert J. Gauthier, Jed H. Rankin, William R. Tonti
  • Publication number: 20040004269
    Abstract: A programmable element that has a first diode having an electrode and a first insulator disposed between the substrate and said electrode of said first device, said first insulator having a first value of a given characteristic, and an FET having an electrode and a second insulator disposed between the substrate and said electrode of said second device, said second insulator having a second value of said given characteristic that is different from said first value. The electrodes of the diode and the FET are coupled to one another, and a source of programming energy is coupled to the diode to cause it to permanently decrease in resistivity when programmed. The programmed state of the diode is indicated by a current in the FET, which is read by a sense latch. Thus a small resistance change in the diode translates to a large signal gain/change in the latch. This allows the diode to be programmed at lower voltages.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 8, 2004
    Applicant: International Business Machines Corporation
    Inventors: John A. Fifield, Russell J. Houghton, William R. Tonti
  • Patent number: 6674139
    Abstract: A field effect transistor has an inverse-T gate conductor having a thicker center portion and thinner wings. The wings may be of a different material different than the center portion. In addition, gate dielectric may be thicker along edges than in the center. Doping can also be different under the wings than along the center portion or beyond the gate. Regions under the wings may be doped differently than the gate conductor. With a substantially vertical implant, a region of the channel overlapped by an edge of the gate is implanted without implanting a center portion of the channel, and this region is blocked from receiving at least a portion of the received by thick portions of the gate electrode.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: January 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Jack A. Mandelman, Carl J. Radens, William R. Tonti
  • Patent number: 6674134
    Abstract: The present invention provides an integrated circuit which comprises a substrate having a plurality of device regions formed therein, said plurality of device regions being electrically isolated from each other by shallow trench isolation (STI) regions and said plurality of device regions each having opposing edges abutting its corresponding STI region; selected ones of said devices regions having a preselected first device width such that an oxide layer formed thereon includes substantially thicker perimeter regions, along said opposing edges, compared to a thinner central region that does not abut its corresponding STI region; and selected other ones of the device regions having a preselected device width substantially narrower in width than the first device width such that an oxide layer formed thereon includes perimeter regions, along opposing edges, that abut each other over its central region thereby preventing formation of a corresponding thinner central region.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: January 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Wayne S. Berry, Jeffrey P. Gambino, Jack A. Mandelman, William R. Tonti
  • Patent number: 6646949
    Abstract: A word line for a row of memory elements of a dynamic random access memory. A first transistor is connected to a source of negative potential and to the word line for switching the word line to a source of negative potential in response to a decoder signal. A diode is additionally connected to the word line and to a selector signal. A second transistor applies a positive potential to the word line in response to a decoder signal. The word line is charged to a positive potential. The word line is reset to a substantially negative potential in two stages. In the first stage, conduction is through the diode to a ground connection which dissipates a majority of the charge of the word line. The remaining charge is dissipated during a second stage when the first transistor discharges the word line remaining charge through a source of negative potential.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: November 11, 2003
    Assignee: International Business Machines Corporation
    Inventors: Wayne F. Ellis, Louis L-C. Hsu, Jack A. Mandelman, William R. Tonti
  • Publication number: 20030207537
    Abstract: A method for detecting semiconductor process stress-induced defects. The method comprising: providing a polysilicon-bounded test diode, the diode comprising a diffused first region within an upper portion of a second region of a silicon substrate, the second region of an opposite dopant type from the first region, the first region surrounded by a peripheral dielectric isolation, a peripheral polysilicon gate comprising a polysilicon layer over a dielectric layer and the gate overlapping a peripheral portion of the first region; stressing the diode; and monitoring the stressed diode for spikes in gate current during the stress, determining the frequency distribution of the slope of the forward bias voltage versus the first region current at the pre-selected forward bias voltage and monitoring, after stress, the diode for soft breakdown. A DRAM cell may be substituted for the diode. The use of the diode as an antifuse is also disclosed.
    Type: Application
    Filed: May 30, 2003
    Publication date: November 6, 2003
    Applicant: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Eric Adler, Jeffrey S. Brown, Robert J. Gauthier, Jonathan M. McKenna, Jed H. Rankin, Edward W. Sengle, William R. Tonti
  • Publication number: 20030207533
    Abstract: A structure including a first device and a second device, wherein the second device has a dielectric thickness greater than the dielectric thickness of the first device, and the method of so forming the structure.
    Type: Application
    Filed: April 10, 2003
    Publication date: November 6, 2003
    Inventors: Louis L. Hsu, Jack A. Mandelman, Carl J. Radens, Richard A. Strub, William R. Tonti
  • Patent number: 6642584
    Abstract: A dual work function semiconductor structure with borderless contact and method of fabricating the same are presented. The structure may include a field effect transistor (FET) having a substantially cap-free gate and a conductive contact to a diffusion adjacent to the cap-free gate, wherein the conductive contact is borderless to the gate. Because the structure is a dual work function structure, the conductive contact is allowed to extend over the cap-free gate without being electrically connected thereto.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: November 4, 2003
    Assignee: International Business Machines Corporation
    Inventors: Qiuyi Ye, William R. Tonti, Yujun Li
  • Publication number: 20030201514
    Abstract: A semiconductor device having an increased intersection perimeter between edge regions of a first conductor and portions of a second conductor is disclosed. In one embodiment, the intersection perimeter is the region where the perimeter of a gate structure overlaps an active area. The intersection perimeter between the conductors directs the breakdown of the dielectric material, increasing the likelihood that the programming event will be successful. In at least one embodiment, the portion of a current path that travels through a highly doped area is increased while the portion that travels through a non-highly doped area is decreased. This decreases post-program resistance, leading to better response time for the device.
    Type: Application
    Filed: April 17, 2002
    Publication date: October 30, 2003
    Applicant: International Business Machines Corporation
    Inventors: Carl J. Radens, William R. Tonti
  • Patent number: 6635543
    Abstract: A method and structure for selectively growing epitaxial silicon in a trench formed within a silicon-on-insulator (SOI) structure. The SOI structure includes a buried oxide layer (BOX) on a bulk silicon substrate, and a silicon layer on the BOX. A pad layer is formed on the silicon layer. The pad layer includes a pad nitride (e.g., silicon nitride) on a pad oxide (e.g., silicon dioxide), and the pad oxide has been formed on the silicon layer. A trench is formed by anisotropically etching through the pad layer, the silicon layer, the BOX, and to a depth within the bulk silicon substrate. Insulative spacers are formed on sidewalls of the trench. An epitaxial silicon layer is grown in the trench from a bottom of the trench to above the pad layer. The pad layer and portions of the epitaxial layer are removed (e.g., by chemical mechanical polishing), resulting in a planarized top surface of the epitaxial layer that is about coplanar with a top surface of the silicon layer.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: October 21, 2003
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Jack A. Mandelman, Dan Moy, Byeongju Park, William R. Tonti
  • Patent number: 6633055
    Abstract: A gap conductor structure for an integrated electronic circuit that may function as an electronic fuse device or as a low capacitance inter level signal line is integrated as part of the semi-conductor chip wiring. The gap conducting structure includes one or more air gap regions of predefined volume that fully or partially exposes a length of interlevel conductor layer in an IC. Alternately, the air gap region may wholly located within the dielectric region below a corresponding conductor and separated by insulator. When functioning as a fuse, the gap region acts to reduce thermal conductivity away from the exposed portion of the conductor enabling generation of higher heat currents in the conducting line with lower applied voltages sufficient to melt a part of the conducting line. The presence of gaps, and hence, the fuses, are scalable and may be tailored to the capacity of currents they must carry with the characteristics of the fuses defined by a circuit designer.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: October 14, 2003
    Assignee: International Business Machines Corporation
    Inventors: Claude L. Bertin, Erik L. Hedberg, Max G. Levy, Timothy D. Sullivan, William R. Tonti
  • Patent number: 6624031
    Abstract: A method for detecting semiconductor process stress-induced defects. The method comprising: providing a polysilicon-bounded test diode, the diode comprising a diffused first region within an upper portion of a second region of a silicon substrate, the second region of an opposite dopant type from the first region, the first region surrounded by a peripheral dielectric isolation, a peripheral polysilicon gate comprising a polysilicon layer over a dielectric layer and the gate overlapping a peripheral portion of the first region; stressing the diode; and monitoring the stressed diode for spikes in gate current during the stress, determining the frequency distribution of the slope of the forward bias voltage versus the first region current at the pre-selected forward bias voltage and monitoring, after stress, the diode for soft breakdown. A DRAM cell may,be substituted for the diode. The use of the diode as an antifuse is also disclosed.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: September 23, 2003
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Eric Adler, Jeffrey S. Brown, Robert J. Gauthier, Jr., Jonathan M. McKenna, Jed H. Rankin, Edward W. Sengle, William R. Tonti
  • Patent number: 6621324
    Abstract: An antifuse structure for improved programming efficiency is disclosed wherein the antifuse structure including a first node providing a first voltage, a plurality of antifuse elements, and a plurality of first switches. The plurality of antifuse elements are commonly connected to the first node. The plurality of first switches are sequentially activated during a program mode to individually apply the first voltage to each antifuse element. The antifuse structure may include a second node to which a second voltage is provided. Each of the plurality of first switches may be coupled between the second node and a corresponding one of the plurality of antifuse elements. The antifuse structure may also include a third node to which a fuse latch is connected. A plurality of second switches may be coupled between the third node and a corresponding one of the plurality antifuse elements. The plurality of second switches may be simultaneously activated during a read mode.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: September 16, 2003
    Assignee: International Business Machines Corporation
    Inventors: John A. Fifield, William R. Tonti
  • Patent number: 6611050
    Abstract: The present invention provides a method of forming a low profile chip interconnection, and the interconnection so formed. A recessed contact area is formed at an edge of the wafer. A conductive material is deposited within the adjacent contact areas of each recess, thereby electrically connecting the two chips. The recess may have substantially perpendicular sides, or sloped sides.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: August 26, 2003
    Assignee: International Business Machines Corporation
    Inventors: Thomas G. Ference, Wayne J. Howell, William R. Tonti, Richard Q. Williams
  • Publication number: 20030155961
    Abstract: An antifuse structure for improved programming efficiency is disclosed wherein the antifuse structure including a first node providing a first voltage, a plurality of antifuse elements, and a plurality of first switches. The plurality of antifuse elements are commonly connected to the first node. The plurality of first switches are sequentially activated during a program mode to individually apply the first voltage to each antifuse element. The antifuse structure may include a second node to which a second voltage is provided. Each of the plurality of first switches may be coupled between the second node and a corresponding one of the plurality of antifuse elements. The antifuse structure may also include a third node to which a fuse latch is connected. A plurality of second switches may be coupled between the third node and a corresponding one of the plurality antifuse elements. The plurality of second switches may be simultaneously activated during a read mode.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 21, 2003
    Applicant: International Business Machines Corporation
    Inventors: John A. Fifield, William R. Tonti
  • Publication number: 20030155599
    Abstract: A programmable memory cell structure that includes a pair of memory cells is provided. Each pair of memory cells includes a shared control gate and first and second floating gates present about the shared control gate. The first and second floating gates have respective gate regions disposed on respective sides of the control gate. Dielectric structures are present between the control gate and respective ones of the gate regions of the floating gates. The control gate and gates of the first and second floating gates are formed within a single lithographic square.
    Type: Application
    Filed: February 21, 2002
    Publication date: August 21, 2003
    Applicant: International Business Machines Corporation
    Inventors: Louis L. Hsu, Chung H. Lam, Jack A. Mandelman, Carl J. Radens, William R. Tonti
  • Patent number: 6596592
    Abstract: An anti-fuse structure that can be programmed at low voltage and current and which potentially consumes very little chip spaces and can be formed interstitially between elements spaced by a minimum lithographic feature size is formed on a composite substrate such as a silicon-on-insulator wafer by etching a contact through an insulator to a support semiconductor layer, preferably in combination with formation of a capacitor-like structure reaching to or into the support layer. The anti-fuse may be programmed either by the selected location of conductor formation and/or damaging a dielectric of the capacitor-like structure. An insulating collar is used to surround a portion of either the conductor or the capacitor-like structure to confine damage to the desired location. Heating effects voltage and noise due to programming currents are effectively isolated to the bulk silicon layer, permitting programming during normal operation of the device.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: July 22, 2003
    Assignee: International Business Machines Corporation
    Inventors: Claude L. Bertin, Ramachandra Divakaruni, Russell J. Houghton, Jack A. Mandelman, William R. Tonti