Patents by Inventor William Santiago-Fernandez

William Santiago-Fernandez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10762243
    Abstract: A system to protect signal integrity includes a circuit board having a secure portion and a non-secure portion. The secure portion includes a protected circuit operable for storing security relevant data, and a secure portion power-supply element. The non-secure portion includes an unprotected circuit and a non-secure portion power-supply element corresponding to the secure portion power-supply element. The secure portion and the non-secure portion element are separated by an isolation gap. A coupling element bridges the isolation gap between the secure portion and the non-secure portion. The coupling element is electrically connected to the secure portion power-supply element within the secure portion and electrically connected to the non-secure portion power-supply portion.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: September 1, 2020
    Assignee: International Business Machines Corporation
    Inventors: Stefano Sergio Oggioni, Matteo Cocchini, William Santiago-Fernandez, Silvio Dragone, Edward N. Cohen
  • Patent number: 10719454
    Abstract: A method includes determining, by a tracker controller of a hardware security module, that a first processor has submitted a first request to access a computing resource. The method also includes determining, by the tracker controller, whether the first request and a second request both request access to the same computing resource. The second request is submitted by a second processor. The method also includes preventing access to the computing resource based on a determination that the first request and the second request do not request access to the same computing resource. The method also includes permitting access to the computing resource based on a determination that the first request and the second request both request access to the same computing resource.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: July 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Silvio Dragone, Nihad Hadzic, William Santiago Fernandez, Tamas Visegrady
  • Publication number: 20200174688
    Abstract: System, methods, and media are provided for enforcing segmentation of multi-tenant data. An example method includes informing hardware of direct memory access (DMA) segmented regions, in which the hardware is informed of software-specified size and count parameters relating to DMA windows. Identifying an originating DMA window for each DMA descriptor and referenced data. Verifying that contents of one or more DMA transfers are entirely from memory controlled by a single process. Setting DMA window-describing registers based the software-specified size and count parameters. Enforcing restrictions, based on the DMA window-describing registers, for DMA requests relating to the DMA windows as DMA requests are received.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Inventors: William Santiago Fernandez, Tamas Visegrady, Silvio Dragone, Nihad Hadzic
  • Patent number: 10667389
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a multilayer circuit board, a tamper-detection sensor, and a vent structure. The tamper-detection sensor is embedded within the multilayer circuit board, and defines, at least in part, a secure volume associated with the multilayer circuit board. The vent structure is incorporated into the multilayer circuit board, and includes at least one vent channel. The vent channel(s) is in fluid communication with a space within the secure volume to facilitate venting the space of the secure volume. The space within the secure volume may accommodate, for instance, one or more electronic components to be protected, and the at least one vent channel may, for instance, allow air pressure within the space of the secure volume to equalize with air pressure external to the tamper-respondent assembly.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: May 26, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Silvio Dragone, Stefano S. Oggioni, William Santiago-Fernandez
  • Patent number: 10624202
    Abstract: Methods of fabricating tamper-respondent assemblies with bond protection are provided which include at least one tamper-respondent sensor having unexposed circuit lines forming, at least in part, one or more tamper-detect network(s), and the tamper-respondent sensor having at least one external bond region. The tamper-respondent assembly further includes at least one conductive trace and an adhesive. The conductive trace(s) forms, at least in part, the one or more tamper-detect network(s), and is exposed, at least in part, on the tamper-respondent sensor(s) within the external bond region(s). The adhesive contacts the conductive trace(s) within the external bond region(s) of the tamper-respondent sensor(s), and the adhesive, in part, facilitates securing the at least one tamper-respondent sensor within the tamper-respondent assembly.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Zachary T. Dreiss, Michael J. Fisher, David C. Long, William Santiago-Fernandez, Thomas Weiss
  • Patent number: 10586056
    Abstract: A method includes determining, by a persistent memory lockstep unit of a hardware security module, that a first processor is attempting to change a state of the hardware security module. The method also includes determining, by the persistent memory lockstep unit, whether a second processor has attempted the same change. The method also includes preventing the change until both the first processor and the second processor have attempted the same change. The method also includes permitting the change to the state of the hardware security module based on a determination that both the first processor and the second processor have both attempted the same change.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Silvio Dragone, Nihad Hadzic, William Santiago Fernandez, Tamas Visegrady
  • Patent number: 10535619
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: January 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, Silvio Dragone, Michael A. Gaynes, Kenneth P. Rodbell, William Santiago-Fernandez
  • Patent number: 10535618
    Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass substrate. The glass substrate is stressed glass with a compressively-stressed surface layer. Further, one or more electronic components are secured to the glass substrate within a secure volume of the tamper-proof electronic package. In operation, the glass substrate is configured to fragment with an attempted intrusion event into the electronic package, and the fragmenting of the glass substrate also fragments the electronic component(s) secured to the glass substrate, thereby destroying the electronic component(s). In certain implementations, the glass substrate has undergone ion-exchange processing to provide the stressed glass.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: January 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Busby, Silvio Dragone, Michael A. Gaynes, Kenneth P. Rodbell, William Santiago-Fernandez
  • Patent number: 10531561
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: January 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kathleen Ann Fadden, James A. Busby, David C. Long, John R. Dangler, Alexandra Echegaray, Michael J. Fisher, William Santiago-Fernandez
  • Publication number: 20200008295
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Application
    Filed: September 11, 2019
    Publication date: January 2, 2020
    Inventors: Kathleen Ann FADDEN, James A. BUSBY, David C. LONG, John R. DANGLER, Alexandra ECHEGARAY, Michael J. FISHER, William SANTIAGO-FERNANDEZ
  • Patent number: 10524362
    Abstract: A circuitized structure with a 3-dimensional configuration. A base structure is provided that includes an insulating substrate of electrically insulating material with a flat configuration, and further includes an electric circuit including at least one layer of electrically conductive material arranged on the insulating substrate. The insulating material includes a thermosetting material being partially cured by stopping a cure thereof at a B-stage before reaching a gel point. The base structure is formed according to the 3-dimensional configuration, and the cure of the thermosetting material is completed.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: December 31, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Silvio Dragone, Stefano S. Oggioni, William Santiago Fernandez
  • Publication number: 20190384942
    Abstract: The present invention relates to a method to fabricate a tamper respondent assembly. The tamper respondent assembly includes an electronic component and an enclosure fully enclosing the electronic component. The method includes printing, by a 3-dimensional printer, a printed circuit board that forms a bottom part of the enclosure and includes a first set of embedded detection lines for detecting tampering events and signal lines for transferring signals between the electronic component and an external device. The electronic component is assembled on the printed circuit board, and a cover part of the enclosure is printed on the printed circuit board. The cover part includes a second set of embedded detection lines. Sensing circuitry can be provided for sensing the conductance of the first set of embedded detection lines and the second set of embedded detection lines to detect tampering events.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 19, 2019
    Inventors: Silvio Dragone, Michael Fisher, William Santiago Fernandez, Ryan Elsasser, James Busby, John R. Dangler, William L. Brodsky, David C. Long, Stefano S. Oggioni
  • Publication number: 20190387617
    Abstract: A method to fabricate a tamper respondent assembly is provided. The tamper respondent assembly includes an electronic component and an enclosure at least partly enclosing the electronic component. A piezoelectric sensor is integrated in the enclosure. The integrating includes providing a base structure that includes a first conductive layer, depositing a piezoelectric layer on the first conductive layer, covering the piezoelectric layer with a second conductive layer, and providing sensing circuitry for observing sensing signals of the piezoelectric layer. The piezoelectric layer includes a plurality of nanorods. Aspects of the invention further relates to a corresponding assembly and a corresponding computer program product.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 19, 2019
    Inventors: Silvio Dragone, Stefano S. Oggioni, William Santiago Fernandez
  • Patent number: 10496851
    Abstract: A system to protect signal integrity includes a circuit board having a secure portion and a non-secure portion. The secure portion includes a protected circuit operable for storing security relevant data, and a secure portion power-supply element. The non-secure portion includes an unprotected circuit and a non-secure portion power-supply element corresponding to the secure portion power-supply element. The secure portion and the non-secure portion element are separated by an isolation gap. A coupling element bridges the isolation gap between the secure portion and the non-secure portion. The coupling element is electrically connected to the secure portion power-supply element within the secure portion and electrically connected to the non-secure portion power-supply portion.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: December 3, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stefano Sergio Oggioni, Matteo Cocchini, William Santiago-Fernandez, Silvio Dragone, Edward N. Cohen
  • Publication number: 20190313526
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which utilize liquid crystal polymer layers in solid form. The tamper-respondent assemblies include a circuit board, and an enclosure assembly mounted to the circuit board to enclose one or more electronic components coupled to the circuit board within a secure volume. The assembly includes a tamper-respondent sensor that is a three-dimensional multilayer sensor structure, which includes multiple liquid crystal polymer layers, and at least one tamper-detect circuit. The at least one tamper-detect circuit includes one or more circuit lines in a tamper-detect pattern disposed on at least one liquid crystal polymer layer of the multiple liquid crystal polymer layers. Further, a monitor circuit is provided disposed within the secure volume to monitor the at least one tamper-detect circuit of the tamper-respondent sensor for a tamper event.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 10, 2019
    Inventors: James A. BUSBY, John R. DANGLER, Mark K. HOFFMEYER, William L. BRODSKY, William SANTIAGO-FERNANDEZ, David C. LONG, Silvio DRAGONE, Michael J. FISHER, Arthur J. HIGBY
  • Patent number: 10426037
    Abstract: A circuitized structure with a 3-dimensional configuration. A base structure is provided that includes an insulating substrate of electrically insulating material with a flat configuration, and further includes an electric circuit including at least one layer of electrically conductive material arranged on the insulating substrate. The insulating material includes a thermosetting material being partially cured by stopping a cure thereof at a B-stage before reaching a gel point. The base structure is formed according to the 3-dimensional configuration, and the cure of the thermosetting material is completed.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: September 24, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Silvio Dragone, Stefano S. Oggioni, William Santiago Fernandez
  • Publication number: 20190261506
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).
    Type: Application
    Filed: February 26, 2019
    Publication date: August 22, 2019
    Inventors: Kathleen Ann FADDEN, James A. BUSBY, David C. LONG, John R. DANGLER, Alexandra ECHEGARAY, Michael J. FISHER, William SANTIAGO-FERNANDEZ
  • Patent number: 10378925
    Abstract: Electronic circuits, electronic packages, and methods of fabrication are provided. The electronic circuit includes a multilayer circuit board, and a tamper-respondent sensor embedded within the circuit board. The tamper-respondent sensor defines, at least in part, a secure volume associated with the multilayer circuit board. In certain implementations, the tamper-respondent sensor includes multiple tamper-respondent layers embedded within the circuit board including, for instance, one or more tamper-respondent frames and one or more tamper-respondent mat layers, with the tamper-respondent frame(s) being disposed, at least in part, above the tamper-respondent mat layer(s), which together define the secure volume where extending into the multilayer circuit board.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: August 13, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, Silvio Dragone, Roger S. Krabbenhoft, David C. Long, Stefano S. Oggioni, Michael T. Peets, William Santiago-Fernandez
  • Patent number: 10378924
    Abstract: Methods of fabricating electronic circuits and electronic packages are provided. The electronic circuit includes a multilayer circuit board, and a tamper-respondent sensor embedded within the circuit board. The tamper-respondent sensor defines, at least in part, a secure volume associated with the multilayer circuit board. In certain implementations, the tamper-respondent sensor includes multiple tamper-respondent layers embedded within the circuit board including, for instance, one or more tamper-respondent frames and one or more tamper-respondent mat layers, with the tamper-respondent frame(s) being disposed, at least in part, above the tamper-respondent mat layer(s), which together define the secure volume where extending into the multilayer circuit board.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: August 13, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, Silvio Dragone, Roger S. Krabbenhoft, David C. Long, Stefano S. Oggioni, Michael T. Peets, William Santiago-Fernandez
  • Patent number: 10360393
    Abstract: A method includes determining, by a persistent memory lockstep unit of a hardware security module, that a first processor is attempting to change a state of the hardware security module. The method also includes determining, by the persistent memory lockstep unit, whether a second processor has attempted the same change. The method also includes preventing the change until both the first processor and the second processor have attempted the same change. The method also includes permitting the change to the state of the hardware security module based on a determination that both the first processor and the second processor have both attempted the same change.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Silvio Dragone, Nihad Hadzic, William Santiago Fernandez, Tamas Visegrady