Patents by Inventor Winfried Kaindl

Winfried Kaindl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9070580
    Abstract: A super junction structure is formed in a semiconductor portion of a super junction semiconductor device. The super junction structure includes a compensation structure with a first compensation layer of a first conductivity type and a second compensation layer of a complementary second conductivity type. The compensation structure lines at least sidewall portions of compensation trenches that extend between semiconductor mesas along a vertical direction perpendicular to a first surface of the semiconductor portion. Within the super junction structure and a pedestal layer that may adjoin the super junction structure, a sign of a lateral compensation rate changes along the vertical direction resulting in a local peak of a vertical electric field gradient and to improved avalanche ruggedness.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: June 30, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Markus Schmitt, Winfried Kaindl, Hans Weber
  • Publication number: 20150145038
    Abstract: A super junction semiconductor device includes a semiconductor portion with a first surface and a second surface parallel to the first surface. The semiconductor portion includes a doped layer of a first conductivity type formed at least in a cell area. The super junction semiconductor device further includes columnar first super junction regions of a second, opposite conductivity type extending in a direction perpendicular to the first surface and separated by columnar second super junction regions of the first conductivity type. The first and second super junction regions form a super junction structure between the first surface and the doped layer. A distance between the first super junction regions and the second surface does not exceed 30 ?m.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 28, 2015
    Inventors: Armin Willmeroth, Franz Hirler, Hans-Joachim Schulze, Uwe Wahl, Winfried Kaindl
  • Patent number: 9029944
    Abstract: In a semiconductor substrate with a first surface and a working surface parallel to the first surface, columnar first and second super junction regions of a first and a second conductivity type are formed. The first and second super junction regions extend in a direction perpendicular to the first surface and form a super junction structure. The semiconductor portion is thinned such that, after the thinning, a distance between the first super junction regions having the second conductivity type and a second surface obtained from the working surface does not exceed 30 ?m. Impurities are implanted into the second surface to form one or more implanted zones. The embodiments combine super junction approaches with backside implants enabled by thin wafer technology.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: May 12, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans-Joachim Schulze, Uwe Wahl, Winfried Kaindl
  • Publication number: 20150115358
    Abstract: The present disclosure provides a semiconductor device, including a compensation area that includes p-regions and n-regions, a plurality of transistor cells including gate electrodes on the compensation area, and one or more interconnections for electrically connecting gate electrodes. The gate electrodes may have a width smaller than ½ of a pitch of the cells.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Anton Mauder, Winfried Kaindl, Uwe Wahl
  • Publication number: 20150115354
    Abstract: The present disclosure provides a semiconductor device, which includes a compensation area which includes p-regions and n-regions, and a plurality of transistor cells on the compensation area. Each of the plurality of transistor cells includes a source region, a body region, a gate and an interlayer dielectric, and a source metallization layer arranged on the interlayer dielectric. The semiconductor device further includes an additional n-doping region that is provided on top of the n-regions between two neighboring body regions, and a source plug which fills a contact hole formed through the interlayer dielectric between the source and body region and the source metallization layer, so as to electrically connect the source and body region and the source metallization layer.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Winfried Kaindl, Franz Hirler, Armin Willmeroth
  • Patent number: 8975136
    Abstract: A super junction semiconductor device includes a semiconductor portion with a first surface and a parallel second surface. A doped layer of a first conductivity type is formed at least in a cell area. Columnar first super junction regions of a second, opposite conductivity type extend in a direction perpendicular to the first surface. Columnar second super junction regions of the first conductivity type separate the first super junction regions from each other. The first and second super junction regions form a super junction structure between the first surface and the doped layer. A distance between the first super junction regions and the second surface does not exceed 30 ?m. The on-state or forward resistance of low-voltage devices rated for reverse breakdown voltages below 1000 V can be defined by the resistance of the super junction structure.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: March 10, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans-Joachim Schulze, Uwe Wahl, Winfried Kaindl
  • Publication number: 20140327069
    Abstract: A super junction structure is formed in a semiconductor portion of a super junction semiconductor device. The super junction structure includes a compensation structure with a first compensation layer of a first conductivity type and a second compensation layer of a complementary second conductivity type. The compensation structure lines at least sidewall portions of compensation trenches that extend between semiconductor mesas along a vertical direction perpendicular to a first surface of the semiconductor portion. Within the super junction structure and a pedestal layer that may adjoin the super junction structure, a sign of a lateral compensation rate changes along the vertical direction resulting in a local peak of a vertical electric field gradient and to improved avalanche ruggedness.
    Type: Application
    Filed: May 1, 2013
    Publication date: November 6, 2014
    Inventors: Armin Willmeroth, Markus Schmitt, Winfried Kaindl, Hans Weber
  • Patent number: 8829584
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Publication number: 20140231909
    Abstract: In a semiconductor substrate with a first surface and a working surface parallel to the first surface, columnar first and second super junction regions of a first and a second conductivity type are formed. The first and second super junction regions extend in a direction perpendicular to the first surface and form a super junction structure. The semiconductor portion is thinned such that, after the thinning, a distance between the first super junction regions having the second conductivity type and a second surface obtained from the working surface does not exceed 30 ?m. Impurities are implanted into the second surface to form one or more implanted zones. The embodiments combine super junction approaches with backside implants enabled by thin wafer technology.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 21, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans-Joachim Schulze, Uwe Wahl, Winfried Kaindl
  • Publication number: 20140231910
    Abstract: A super junction semiconductor device includes a semiconductor portion with a first surface and a parallel second surface. A doped layer of a first conductivity type is formed at least in a cell area. Columnar first super junction regions of a second, opposite conductivity type extend in a direction perpendicular to the first surface. Columnar second super junction regions of the first conductivity type separate the first super junction regions from each other. The first and second super junction regions form a super junction structure between the first surface and the doped layer. A distance between the first super junction regions and the second surface does not exceed 30 ?m. The on-state or forward resistance of low-voltage devices rated for reverse breakdown voltages below 1000 V can be defined by the resistance of the super junction structure.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 21, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler, Hans-Joachim Schulze, Uwe Wahl, Winfried Kaindl
  • Publication number: 20140124851
    Abstract: According to an embodiment, a method of forming a power semiconductor device is provided. The method includes providing a semiconductor substrate and forming an epitaxial layer on the semiconductor substrate. The epitaxial layer includes a body region, a source region, and a drift region. The method further includes forming a dielectric layer on the epitaxial layer. The dielectric layer is formed thicker above a drift region of the epitaxial layer than above at least part of the body region and the dielectric layer is formed at a temperature less than 950° C.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: Infineon Technologies Austria AG
    Inventors: Stefan Gamerith, Markus Schmitt, Winfried Kaindl, Gerald Sölkner
  • Publication number: 20130009227
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 8294206
    Abstract: An integrated circuit device includes a semiconductor body fitted with a first electrode and a second electrode on opposite surfaces. A control electrode on an insulating layer controls channel regions of body zones for a current flow between the two electrodes. A drift section adjoining the channel regions comprises drift zones and charge compensation zones. A part of the charge compensation zones includes conductively connected charge compensation zones electrically connected to the first electrode. Another part includes nearly-floating charge compensation zones, so that an increased control electrode surface has a monolithically integrated additional capacitance CZGD in a cell region of the semiconductor device.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 23, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Winfried Kaindl, Carolin Tolksdorf, Michael Rueb
  • Patent number: 8273622
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 25, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Publication number: 20110244646
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Publication number: 20110241104
    Abstract: An integrated circuit device includes a semiconductor body fitted with a first electrode and a second electrode on opposite surfaces. A control electrode on an insulating layer controls channel regions of body zones for a current flow between the two electrodes. A drift section adjoining the channel regions comprises drift zones and charge compensation zones. A part of the charge compensation zones includes conductively connected charge compensation zones electrically connected to the first electrode. Another part includes nearly-floating charge compensation zones, so that an increased control electrode surface has a monolithically integrated additional capacitance CZGD in a cell region of the semiconductor device.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Applicant: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Winfried Kaindl, Carolin Tolksdorf, Michael Rueb
  • Patent number: 7982253
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: July 19, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 7977737
    Abstract: A semiconductor device with inherent capacitances and method for its production. The semiconductor device has an inherent feedback capacitance between a control electrode and a first electrode. In addition, the semiconductor device has an inherent drain-source capacitance between the first electrode and a second electrode. At least one monolithically integrated additional capacitance is connected in parallel to the inherent feedback capacitance or in parallel to the inherent drain-source capacitance. The additional capacitance comprises a first capacitor surface and a second capacitor surface opposite the first capacitor surface. The capacitor surfaces are structured conductive layers of the semiconductor device on a front side of the semiconductor body, between which a dielectric layer is located and which form at least one additional capacitor.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: July 12, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Winfried Kaindl, Carolin Tolksdorf, Anton Mauder, Holger Kapels, Gerald Deboy, Franz Hirler
  • Publication number: 20100025748
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Publication number: 20090321818
    Abstract: A semiconductor component with a two-stage body zone. One embodiment provides semiconductor component including a drift zone, and a compensation zone of a second conduction type. The compensation zone is arranged in the drift zone. A source zone and a body zone is provided. The body zone is arranged between the source zone and the drift zone. A gate electrode is arranged adjacent to the body zone. The body zone has a first body zone section and a second body zone section, which are adjacent to one another along the gate dielectric and of which the first body zone section is doped more highly than the second body zone section.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Anton Mauder, Winfried Kaindl