Patents by Inventor Woohong Kim

Woohong Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240066834
    Abstract: A bonded optical assembly comprising infrared-transparent materials. The assembly comprises two or more infrared transparent optical elements and a polymer comprising at least one chalcogenide element and crosslinking moieties between the infrared-transparent optical elements. The crosslinking moieties may be organic, inorganic, or both.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventors: Darryl A. Boyd, Jason D. Myers, Vinh Q. Nguyen, Daniel J. Gibson, Colin C. Baker, Woohong Kim, Jasbinder S. Sanghera
  • Patent number: 11912606
    Abstract: This application relates generally to an optical fiber for the delivery of infrared light where the polarization state of the light entering the fiber is preserved upon exiting the fiber and the related methods for making thereof. The optical fiber has a wavelength between about 0.9 ?m and 15 ?m, comprises at least one infrared-transmitting glass, and has a polarization-maintaining (PM) transverse cross-sectional structure. The infrared-transmitting, polarization-maintaining (IR-PM) optical fiber has a birefringence greater than 10?5 and has applications in dual-use technologies including laser power delivery, sensing and imaging.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: February 27, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Daniel Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Rafael R. Gattass, Jesse A. Frantz, Jason D. Myers, Woohong Kim, Jasbinder S. Sanghera
  • Publication number: 20240043342
    Abstract: The present invention provides a method for making a high strength, small grain size ceramic having a transgranular fracture mode by rapid densification of a green body and subsequent cooling of the densified ceramic. The ceramic may include dislocations, defects, dopants, and/or secondary phases that are formed as a result of the process and resulting in stress fields capable of redirecting or arresting cracks within the material. This ceramic can maintain transparency from ultraviolet to mid-wave infrared.
    Type: Application
    Filed: October 17, 2023
    Publication date: February 8, 2024
    Inventors: Michael Hunt, Guillermo R. Villalobos, Benjamin Rock, Shyam S. Bayya, Woohong Kim, Ishwar D. Aggarwal, Bryan Sadowski, Jasbinder S. Sanghera
  • Patent number: 11827008
    Abstract: A method for bonding infrared transparent materials by placing a polymer comprising at least one chalcogenide element and crosslinking moieties between infrared-transparent optical elements and applying heat, pressure, or both. The crosslinking moieties may be organic, inorganic, or both. Also disclosed is the related bonded assembly comprising infrared transparent optical elements.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: November 28, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Darryl A. Boyd, Jason D. Myers, Vinh Q. Nguyen, Daniel J. Gibson, Colin C. Baker, Woohong Kim, Jasbinder S. Sanghera
  • Patent number: 11807580
    Abstract: The present invention provides a method for making a high strength, small grain size ceramic having a transgranular fracture mode by rapid densification of a green body and subsequent cooling of the densified ceramic. The ceramic may include dislocations, defects, dopants, and/or secondary phases that are formed as a result of the process and resulting in stress fields capable of redirecting or arresting cracks within the material. This ceramic can maintain transparency from ultraviolet to mid-wave infrared.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: November 7, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Michael Hunt, Guillermo R. Villalobos, Benjamin Rock, Shyam S. Bayya, Woohong Kim, Ishwar D. Aggarwal, Bryan Sadowski, Jasbinder S. Sanghera
  • Publication number: 20230286871
    Abstract: Disclosed is a method of flash sintering a sample composed of ceramic particles by providing laser energy to change the electrical properties of the ceramic material. The processes and systems disclosed herein do not require large heating equipment like a furnace allowing for a portable system of repairing ceramic materials in the field.
    Type: Application
    Filed: March 23, 2023
    Publication date: September 14, 2023
    Inventors: Guillermo R. Villalobos, Rafael R. Gattass, Michael Hunt, Shyam S. Bayya, Bryan Sadowski, Robert Miklos, Frederic H. Kung, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera, Antti Makinen
  • Publication number: 20220332918
    Abstract: A polymer comprising one or more chalcogenide elements and one or more crosslinking moieties. The crosslinking moieties may be organic, inorganic, or both. Also disclosed is the related method for making a polymer comprising purifying a chalcogenide polymer powder comprising one or more chalcogenide elements, melting the purified chalcogenide polymer powder, adding one or more crosslinking moieties to the melted chalcogenide polymer, and curing the modified chalcogenide polymer at a temperature between 150 and 200° C.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Darryl A. Boyd, Vinh Q. Nguyen, Nia A. Pollard, Frederic H. Kung, Daniel J. Gibson, Jason D. Myers, Colin C. Baker, Woohong Kim, Jasbinder S. Sanghera
  • Publication number: 20220227675
    Abstract: The present invention provides a method for making a high strength, small grain size ceramic having a transgranular fracture mode by rapid densification of a green body and subsequent cooling of the densified ceramic. The ceramic may include dislocations, defects, dopants, and/or secondary phases that are formed as a result of the process and resulting in stress fields capable of redirecting or arresting cracks within the material. This ceramic can maintain transparency from ultraviolet to mid-wave infrared.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Inventors: Michael Hunt, Guillermo R. Villalobos, Benjamin Rock, Shyam S. Bayya, Woohong Kim, Ishwar D. Aggarwal, Bryan Sadowski, Jasbinder S. Sanghera
  • Publication number: 20220190173
    Abstract: A composition of matter having a coated silicon substrate with multiple alternating layers of polydopamine and polyallylamine bound copper-indium-gallium oxide (CIGO) nanoparticles on the substrate. A related composition of matter having polyallylamine bound to CIGO nanoparticles to form PAH-coated CIGO nanoparticles. A related CIGO thin film made via conversion of layer-by-layer assembled CIGO nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine or polystyrenesulfonate and then in the CIGO-PAH dispersion to fabricate CIGO films as thick as 1-2 microns.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Patent number: 11299428
    Abstract: The present invention provides a method for making a high strength, small grain size ceramic having a trans-granular fracture mode by rapid densification of a green body and subsequent cooling of the densified ceramic. The ceramic may include dislocations, defects, dopants, and/or secondary phases that are formed as a result of the process and resulting in stress fields capable of redirecting or arresting cracks within the material. This ceramic can maintain transparency from ultraviolet to mid-wave infrared.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: April 12, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Michael Hunt, Guillermo R. Villalobos, Benjamin Rock, Shyam S. Bayya, Woohong Kim, Ishwar D. Aggarwal, Bryan Sadowski, Jasbinder S. Sanghera
  • Patent number: 11271124
    Abstract: A composition of matter having a coated silicon substrate with multiple alternating layers of polydopamine and polyallylamine bound copper-indium-gallium oxide (CIGO) nanoparticles on the substrate. A related composition of matter having polyallylamine bound to CIGO nanoparticles to form PAH-coated CIGO nanoparticles. A related CIGO thin film made via conversion of layer-by-layer assembled CIGO nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine or polystyrenesulfonate and then in the CIGO-PAH dispersion to fabricate CIGO films as thick as 1-2 microns.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: March 8, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Publication number: 20210313756
    Abstract: Methods for synthesizing fibers having nanoparticles therein are provided, as well as preforms and fibers incorporating nanoparticles. The nanoparticles may include one or more rare earth ions selected based on fluorescence at eye-safer wavelengths, surrounded by a low-phonon energy host. Nanoparticles that are not doped with rare earth ions may also be included as a co-dopant to help increase solubility of nanoparticles doped with rare earth ions in the silica matrix. The nanoparticles may be incorporated into a preform, which is then drawn to form fiber. The fibers may beneficially be incorporated into lasers and amplifiers that operate at eye safer wavelengths. Lasers and amplifiers incorporating the fibers may also beneficially exhibit reduced Stimulated Brillouin Scattering.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 7, 2021
    Inventors: Colin C. Baker, Edward J. Friebele, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 11130675
    Abstract: A nanoparticle containing monoclinic lutetium oxide. A method of: dispersing a lutetium salt solution in a stream of oxygen gas to form droplets, and combusting the droplets to form nanoparticles containing lutetium oxide. The combustion occurs at a temperature sufficient to form monoclinic lutetium oxide in the nanoparticles. An article containing lutetium oxide and having an average grain size of at most 10 microns.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: September 28, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Patent number: 11043785
    Abstract: Methods for synthesizing fibers having nanoparticles therein are provided, as well as preforms and fibers incorporating nanoparticles. The nanoparticles may include one or more rare earth ions selected based on fluorescence at eye-safer wavelengths, surrounded by a low-phonon energy host. Nanoparticles that are not doped with rare earth ions may also be included as a co-dopant to help increase solubility of nanoparticles doped with rare earth ions in the silica matrix. The nanoparticles may be incorporated into a preform, which is then drawn to form fiber. The fibers may beneficially be incorporated into lasers and amplifiers that operate at eye safer wavelengths. Lasers and amplifiers incorporating the fibers may also beneficially exhibit reduced Stimulated Brillouin Scattering.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: June 22, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Edward J. Friebele, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20210162709
    Abstract: A method for bonding infrared transparent materials by placing a polymer comprising at least one chalcogenide element and crosslinking moieties between infrared-transparent optical elements and applying heat, pressure, or both. The crosslinking moieties may be organic, inorganic, or both. Also disclosed is the related bonded assembly comprising infrared transparent optical elements.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 3, 2021
    Inventors: Darryl A. Boyd, Jason D. Myers, Vinh Q. Nguyen, Danial J. Gibson, Colin C. Baker, Woohong Kim, Jasbinder S. Sanghera
  • Publication number: 20210109256
    Abstract: A method for producing nanostructured, hydrophilic, transmissive, anti-reflective surfaces is described. The method for providing a hydrophilic surface includes steps of providing a substrate that is transmissive in at least one wavelength in the infrared to ultraviolet range of the electromagnetic spectrum and comprises at least one surface including nanostructures of a size smaller than the at least one wavelength; and functionalizing the at least one surface with hydroxyl groups thereon. This method provides devices having excellent transmittance and anti-reflectance properties and which are resistant to seawater.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Darryl A. Boyd, Jesse A. Frantz, Shyam S. Bayya, Lynda E. Busse, Jasbinder S. Sanghera, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20200325300
    Abstract: This application relates generally to polymer materials comprising nanoscale ceramic particles for use as a coating in clad pump fiber lasers, including those that function at eye-safer wavelengths and the related method of making them. Fluorinated polymers that possess low refractive index, low optical loss, and high thermal stability are combined with fluorinated ceramic nanoparticles that possess low refractive index and high thermal conductivity to develop a polymer material.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 15, 2020
    Inventors: Darryl A. Boyd, Daniel Rhonehouse, Colin C. Baker, L. Brandon Shaw, Woohong Kim, Jasbinder S. Sanghera
  • Publication number: 20200317557
    Abstract: This application relates generally to an optical fiber for the delivery of infrared light where the polarization state of the light entering the fiber is preserved upon exiting the fiber and the related methods for making thereof. The optical fiber has a wavelength between about 0.9 ?m and 15 ?m, comprises at least one infrared-transmitting glass, and has a polarization-maintaining (PM) transverse cross-sectional structure. The infrared-transmitting, polarization-maintaining (IR-PM) optical fiber has a birefringence greater than 10?5 and has applications in dual-use technologies including laser power delivery, sensing and imaging.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 8, 2020
    Inventors: Daniel J. Gibson, Daniel Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Rafael R. Gattass, Jesse A. Frantz, Jason D. Myers, Woohong Kim, Jasbinder S. Sanghera
  • Publication number: 20200203541
    Abstract: A composition of matter having a coated silicon substrate with multiple alternating layers of polydopamine and polyallylamine bound copper-indium-gallium oxide (CIGO) nanoparticles on the substrate. A related composition of matter having polyallylamine bound to CIGO nanoparticles to form PAH-coated CIGO nanoparticles. A related CIGO thin film made via conversion of layer-by-layer assembled CIGO nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine or polystyrenesulfonate and then in the CIGO-PAH dispersion to fabricate CIGO films as thick as 1-2 microns.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 25, 2020
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Patent number: 10677567
    Abstract: A transparent composite armor is made of tens to hundreds or even thousands of thin layers of material each with a thickness of 10-500 ?m. An appropriate amount of impedance mismatch between the layers causes some reflection at each interface but limit the amplitude of the resulting tensile wave below the tensile strength of the constituent materials. The result is an improvement in ballistic performance and that will result is a significant impact in reducing size, weight, and volume of the armor.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: June 9, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Guillermo R. Villalobos, Shyam S. Bayya, Woohong Kim, Bryan Sadowski, Michael Hunt, Robert E. Miklos, Colin C. Baker, Jasbinder S. Sanghera, Alex E. Moser