Patents by Inventor Wu-An Weng
Wu-An Weng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250062201Abstract: A package includes a first integrated circuit die and a second integrated circuit die over and bonded to the first integrated circuit die. A first surface region of the second integrated circuit die is hydrophobic, and the first integrated circuit die and the second integrated circuit die are bonded together with dielectric-to-dielectric bonds and metal-to-metal bonds. The package further includes a first insulating material over the first integrated circuit and surrounding the second integrated circuit die. The first insulating material contacts the first surface region.Type: ApplicationFiled: November 3, 2023Publication date: February 20, 2025Inventors: Chen-Shien Chen, Chi-Yen Lin, Po-Chen Chen, Wu-An Weng, Hsu-Hsien Chen
-
Patent number: 11961770Abstract: Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.Type: GrantFiled: November 4, 2021Date of Patent: April 16, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Han Lin, Chien-Fa Lee, Hsu-Shui Liu, Jiun-Rong Pai, Sheng-Hsiang Chuang, Surendra Kumar Soni, Shou-Wen Kuo, Wu-An Weng, Gary Tsai, Chien-Ko Liao, Ya Hsun Hsueh, Becky Liao, Ethan Yu, Ming-Chi Tsai, Kuo-Yi Liu
-
Publication number: 20220059415Abstract: Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.Type: ApplicationFiled: November 4, 2021Publication date: February 24, 2022Inventors: Chia-Han Lin, Chien-Fa Lee, Hsu-Shui Liu, Jiun-Rong Pai, Sheng-Hsiang Chuang, Surendra Kumar Soni, Shou-Wen Kuo, Wu-An Weng, Gary Tsai, Chien-Ko Liao, Ya Hsun Hsueh, Becky Liao, Ethan Yu, Ming-Chi Tsai, Kuo-Yi Liu
-
Patent number: 11171065Abstract: Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.Type: GrantFiled: October 14, 2019Date of Patent: November 9, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Han Lin, Chien-Fa Lee, Hsu-Shui Liu, Jiun-Rong Pai, Sheng-Hsiang Chuang, Surendra Kumar Soni, Shou-Wen Kuo, Wu-An Weng, Gary Tsai, Chien-Ko Liao, Ya Hsun Hsueh, Becky Liao, Ethan Yu, Ming-Chi Tsai, Kuo-Yi Liu
-
Publication number: 20200043812Abstract: Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.Type: ApplicationFiled: October 14, 2019Publication date: February 6, 2020Inventors: Chia-Han Lin, Chien-Fa Lee, Hsu-Shui Liu, Jiun-Rong Pai, Sheng-Hsiang Chuang, Surendra Kumar Soni, Shou-Wen Kuo, Wu-An Weng, Gary Tsai, Chien-Ko Liao, Ya Hsun Hsueh, Becky Liao, Ethan Yu, Ming-Chi Tsai, Kuo-Yi Liu
-
Patent number: 10490463Abstract: Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.Type: GrantFiled: February 26, 2018Date of Patent: November 26, 2019Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Han Lin, Chien-Fa Lee, Hsu-Shui Liu, Jiun-Rong Pai, Sheng-Hsiang Chuang, Surendra Kumar Soni, Shou-Wen Kuo, Wu-An Weng, Gary Tsai, Chien-Ko Liao, Ya Hsun Hsueh, Becky Liao, Ethan Yu, Ming-Chi Tsai, Kuo-Yi Liu
-
Publication number: 20190035696Abstract: Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.Type: ApplicationFiled: February 26, 2018Publication date: January 31, 2019Inventors: Chia-Han Lin, Chien-Fa Lee, Hsu-Shui Liu, Jiun-Rong Pai, Sheng-Hsiang Chuang, Surendra Kumar Soni, Shou-Wen Kuo, Wu-An Weng, Gary Tsai, Chien-Ko Liao, Ya Hsun Hsueh, Becky Liao, Ethan Yu, Ming-Chi Tsai, Kuo-Yi Liu
-
Patent number: 9972771Abstract: MRAM devices and methods of forming the same are provided. One of the MRAM devices includes a dielectric layer, a resistance variable memory cell and a conductive layer. The dielectric layer is over a substrate and has an opening. The resistance variable memory cell is in the opening and includes a first electrode, a second electrode and a magnetic tunnel junction layer between the first electrode and the second electrode. The conductive layer fills a remaining portion of the opening and is electrically connected to one of the first electrode and the second electrode of the resistance variable memory cell.Type: GrantFiled: March 24, 2016Date of Patent: May 15, 2018Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chun-Chieh Mo, Shih-Chi Kuo, Tsung-Hsien Lee, Wu-An Weng, Chung-Yu Lin
-
Publication number: 20170279036Abstract: MRAM devices and methods of forming the same are provided. One of the MRAM devices includes a dielectric layer, a resistance variable memory cell and a conductive layer. The dielectric layer is over a substrate and has an opening. The resistance variable memory cell is in the opening and includes a first electrode, a second electrode and a magnetic tunnel junction layer between the first electrode and the second electrode. The conductive layer fills a remaining portion of the opening and is electrically connected to one of the first electrode and the second electrode of the resistance variable memory cell.Type: ApplicationFiled: March 24, 2016Publication date: September 28, 2017Inventors: Chun-Chieh Mo, Shih-Chi Kuo, Tsung-Hsien Lee, Wu-An Weng, Chung-Yu Lin
-
Patent number: 9472690Abstract: The present disclosure provides a deep trench capacitor device. A first capacitor electrode is made up of a doped region of semiconductor substrate in which two or more trenches are arranged. A second capacitor electrode is made up of a continuous body of conductive material. The continuous body of conductive material includes a lower body portion filling the two or more trenches and an upper body portion extending continuously over the lower body portion. The upper body portion extends upwardly out of the trenches by a non-zero distance. A capacitor dielectric liner is arranged in the two or more trenches to separate the first and second capacitor electrodes. The capacitor dielectric liner extends continuously out of the two or more trenches along outer sidewalls of the upper body portion.Type: GrantFiled: June 30, 2014Date of Patent: October 18, 2016Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Wu-An Weng, Chen-Chien Chang
-
Patent number: 9012296Abstract: A method for forming a trench capacitor includes providing a substrate of a semiconductor material having a hard mask layer; etching the hard mask layer and the substrate to form at least one trench extending into the substrate; and performing pull-back etching on the hard mask layer. In the pull-back etching, a portion of the hard mask layer defining and adjacent to side walls of an opening of the at least one trench is removed. A resulting opening on the hard mask layer has a width dimension larger than a width dimension of an opening of the at least one trench extending into the substrate. The method further comprises doping the semiconductor material defining upper surfaces and sidewalls of the at least one trench to form a doped well region.Type: GrantFiled: December 11, 2012Date of Patent: April 21, 2015Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Wu-An Weng, Chen-Chien Chang
-
Publication number: 20140327109Abstract: The present disclosure provides a deep trench capacitor device. A first capacitor electrode is made up of a doped region of semiconductor substrate in which two or more trenches are arranged. A second capacitor electrode is made up of a continuous body of conductive material. The continuous body of conductive material includes a lower body portion filling the two or more trenches and an upper body portion extending continuously over the lower body portion. The upper body portion extends upwardly out of the trenches by a non-zero distance. A capacitor dielectric liner is arranged in the two or more trenches to separate the first and second capacitor electrodes. The capacitor dielectric liner extends continuously out of the two or more trenches along outer sidewalls of the upper body portion.Type: ApplicationFiled: June 30, 2014Publication date: November 6, 2014Inventors: Wu-An Weng, Chen-Chien Chang
-
Patent number: 8853048Abstract: The present disclosure provides a streamlined approach to forming vertically structured devices such as deep trench capacitors. Trenches and a contact plate bridging the trenches are formed using one lithographic process. A hard mask is formed over the substrate and etched through the mask to form two or more closely spaced trenches. The hard mask is then reduced by an isotropic etch process. The etch removes the hard mask preferentially between the trenches. Chemical mechanical polishing removes the conductive material down to the remaining hard mask layer, whereby conductive material remains in mask openings and forms a conductive bridge across the trenches.Type: GrantFiled: November 1, 2012Date of Patent: October 7, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Wu-An Weng, Chen-Chien Chang
-
Publication number: 20140159197Abstract: A method for forming a trench capacitor includes providing a substrate of a semiconductor material having a hard mask layer; etching the hard mask layer and the substrate to form at least one trench extending into the substrate; and performing pull-back etching on the hard mask layer. In the pull-back etching, a portion of the hard mask layer defining and adjacent to side walls of an opening of the at least one trench is removed. A resulting opening on the hard mask layer has a width dimension larger than a width dimension of an opening of the at least one trench extending into the substrate. The method further comprises doping the semiconductor material defining upper surfaces and sidewalls of the at least one trench to form a doped well region.Type: ApplicationFiled: December 11, 2012Publication date: June 12, 2014Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wu-An WENG, Chen-Chien CHANG
-
Publication number: 20140120690Abstract: The present disclosure provides a streamlined approach to forming vertically structured devices such as deep trench capacitors. Trenches and a contact plate bridging the trenches are formed using one lithographic process. A hard mask is formed over the substrate and etched through the mask to form two or more closely spaced trenches. The hard mask is then reduced by an isotropic etch process. The etch removes the hard mask preferentially between the trenches. Chemical mechanical polishing removes the conductive material down to the remaining hard mask layer, whereby conductive material remains in mask openings and forms a conductive bridge across the trenches.Type: ApplicationFiled: November 1, 2012Publication date: May 1, 2014Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Wu-An Weng, Chen-Chien Chang
-
Patent number: 7795644Abstract: Semiconductor devices with selective stress memory effect and fabrication methods thereof. The semiconductor device comprises a semiconductor substrate with a first region and a second region. Both the first region and the second region have a first doped region and a second doped region separated by an insulation layer. A PMOS transistor is disposed on the first doped region layer. An NMOS transistor is disposed on the second doped region. A first capping layer is disposed covering the NMOS transistor over the first region. A second capping layer is disposed covering the PMOS transistor over the first region. The thickness of the first capping layer is different from the thickness of the second capping layer, thereby different stress is induced on the PMOS transistor and the NMOS transistor respectively. The PMOS transistor and the NMOS transistor over the second region are silicided.Type: GrantFiled: January 4, 2007Date of Patent: September 14, 2010Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Mei-Yun Wang, Cheng-Chen Hsueh, Wu-An Weng
-
Publication number: 20080164530Abstract: Semiconductor devices with selective stress memory effect and fabrication methods thereof. The semiconductor device comprises a semiconductor substrate with a first region and a second region. Both the first region and the second region have a first doped region and a second doped region separated by an insulation layer. A PMOS transistor is disposed on the first doped region layer. An NMOS transistor is disposed on the second doped region. A first capping layer is disposed covering the NMOS transistor over the first region. A second capping layer is disposed covering the PMOS transistor over the first region. The thickness of the first capping layer is different from the thickness of the second capping layer, thereby different stress is induced on the PMOS transistor and the NMOS transistor respectively. The PMOS transistor and the NMOS transistor over the second region are silicided.Type: ApplicationFiled: January 4, 2007Publication date: July 10, 2008Inventors: Mei-Yun Wang, Cheng-chen Hsueh, Wu-An Weng
-
Patent number: 7141179Abstract: The invention describes a method to facilitate the use of low-sensitivity monitoring equipment for detecting and monitoring defects on the surface of semiconductor wafers. The method includes the use of a hydrofluoric acid solution for increasing the dimensions of a defect and the application of a thin-film layer of a metal, such as titanium, for improving the appearance of the defect such that the defect dimensions increase to above 0.1 nanometer, the detection threshold for economical low-sensitivity monitoring equipment.Type: GrantFiled: August 23, 2004Date of Patent: November 28, 2006Assignee: Macronix International Co., Ltd.Inventors: Wu-An Weng, Wang-Tsai Hsu, Kun-Yu Liu, Yi-Chieh Lai
-
Patent number: 7041565Abstract: A method for fabricating a capacitor in a semiconductor device that includes providing a semiconductor substrate, forming at least one shallow trench isolation structure in the semiconductor substrate, forming a tunnel oxide layer over the semiconductor substrate, depositing a first polysilicon layer over the tunnel oxide layer, depositing a nitride layer over the first polysilicon layer, depositing a first photoresist over the nitride layer, patterning and defining the first photoresist layer to expose at least a portion of the nitride layer, etching the exposed portion of the nitride layer and the first polysilicon layer underneath the exposed portion of the nitride layer to expose at least a portion of the tunnel oxide layer, removing the patterned and defined photoresist layer, forming a second oxide layer over at least the exposed portion of the tunnel oxide layer, providing a second photoresist layer over the second oxide layer, providing an etchback process to remove a portion of the second photoresistType: GrantFiled: June 23, 2004Date of Patent: May 9, 2006Assignee: Macronix International Co., Ltd.Inventor: Wu-An Weng
-
Publication number: 20060037941Abstract: The invention describes a method to facilitate the use of low-sensitivity monitoring equipment for detecting and monitoring defects on the surface of semiconductor wafers. The method includes the use of a hydrofluoric acid solution for increasing the dimensions of a defect and the application of a thin-film layer of a metal, such as titanium, for improving the appearance of the defect such that the defect dimensions increase to above 0.1 nanometer, the detection threshold for economical low-sensitivity monitoring equipment.Type: ApplicationFiled: August 23, 2004Publication date: February 23, 2006Inventors: Wu-An Weng, Wang-Tsai Hsu, Kun-Yu Liu, Yi-Chieh Lai