Patents by Inventor Wu Te

Wu Te has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220336588
    Abstract: A high voltage device includes: a semiconductor layer, a well, a body region, a body contact, a gate, a source, and a drain. The body cofntact is configured as an electrical contact of the body region. The body contact and the source overlap with each other to define an overlap region. The body contact has a depth from an upper surface of the semiconductor layer, wherein the depth is deeper than a depth of the source, whereby a part of the body contact is located vertically below the overlap region. A length of the overlap region in a channel direction is not shorter than a predetermined length, so as to suppress a parasitic bipolar junction transistor from being turning on when the high voltage device operates, wherein the parasitic bipolar junction transistor is formed by a part of the well, a part of the body region and a part of the source.
    Type: Application
    Filed: April 11, 2022
    Publication date: October 20, 2022
    Inventors: Chih-Wen Hsiung, Chun-Lung Chang, Kun-Huang Yu, Kuo-Chin Chiu, Wu-Te Weng
  • Publication number: 20220238727
    Abstract: The present invention provides a Zener diode and a manufacturing method thereof. The Zener diode includes: a semiconductor layer, an N-type region, and a P-type region. The N-type region has N-type conductivity, wherein the N-type region is formed in the semiconductor layer beneath an upper surface of the semiconductor layer, and in contact with the upper surface. The P-type region has P-type conductivity, wherein the P-type region is formed in the semiconductor layer and is completely beneath the N-type region, and in contact with the N-type region. The N-type region overlays the entire P-type region. The N-type region has an N-type conductivity dopant concentration, wherein the N-type conductivity dopant concentration is higher than a P-type conductivity dopant concentration of the P-type region.
    Type: Application
    Filed: January 7, 2022
    Publication date: July 28, 2022
    Inventors: Ting-Wei Liao, Chien-Yu Chen, Kun-Huang Yu, Wu-Te Weng, Chien-Wei Chiu, Ta-Yung Yang
  • Publication number: 20220223464
    Abstract: A high voltage device includes: a semiconductor layer, a well, a bulk region, a gate, a source, and a drain. The bulk region is formed in the semiconductor layer and contacts the well region along a channel direction. A portion of the bulk region is vertically below and in contact with the gate, to provide an inversion region of the high voltage device when the high voltage device is in conductive operation. A portion of the well lies between the bulk region and the drain, to separate the bulk region from the drain. A first concentration peak region of an impurities doping profile of the bulk region is vertically below and in contact with the source. A concentration of a second conductivity type impurities of the first concentration peak region is higher than that of other regions in the bulk region.
    Type: Application
    Filed: December 10, 2021
    Publication date: July 14, 2022
    Inventors: Kun-Huang Yu, Chien-Yu Chen, Ting-Wei Liao, Chih-Wen Hsiung, Chun-Lung Chang, Kuo-Chin Chiu, Wu-Te Weng, Chien-Wei Chiu, Yong-Zhong Hu, Ta-Yung Yang
  • Publication number: 20220223733
    Abstract: A high voltage device includes: a semiconductor layer, a well region, a shallow trench isolation region, a drift oxide region, a body region, a gate, a source, and a drain. The drift oxide region is located on a drift region. The shallow trench isolation region is located below the drift oxide region. A part of the drift oxide region is located vertically above a part of the shallow trench isolation region and is in contact with the shallow trench isolation region. The shallow trench isolation region is formed between the drain and the body region.
    Type: Application
    Filed: December 10, 2021
    Publication date: July 14, 2022
    Inventors: Chun-Lung Chang, Chih-Wen Hsiung, Kun-Huang Yu, Kuo-Chin Chiu, Wu-Te Weng, Chien-Wei Chiu, Ta-Yung Yang
  • Publication number: 20220224325
    Abstract: A switch capable of decreasing parasitic inductance includes: a semiconductor device, a first top metal line, and a second top metal line. The second top metal line electrically connects a power supply input end and a current inflow end of the semiconductor device, wherein a first part of the first top metal line is arranged in parallel and adjacent to a second part of the second top metal line. When the semiconductor device is in an ON operation, an input current outflows from the power supply input end, and is divided into a first current and a second current. When the first current and the second current flow through the first part and the second part respectively, the first current and the second current flow opposite to each other, to reduce an total parasitic inductance of the first top metal line and the second top metal line.
    Type: Application
    Filed: January 4, 2022
    Publication date: July 14, 2022
    Inventors: Kun-Huang Yu, Chien-Yu Chen, Ting-Wei Liao, Wu-Te Weng, Chien-Wei Chiu, Yong-Zhong Hu, Ta-Yung Yang
  • Publication number: 20220157982
    Abstract: A high voltage device for use as an up-side switch of a power stage circuit includes: at least one lateral diffused metal oxide semiconductor (LDMOS) device, a second conductivity type isolation region and at least one Schottky barrier diode (SBD). The LDMOS device includes: a well formed in a semiconductor layer, a body region, a gate, a source and a drain. The second conductivity type isolation region is formed in the semiconductor layer and is electrically connected to the body region. The SBD includes: a Schottky metal layer formed on the semiconductor layer and a Schottky semiconductor layer formed in the semiconductor layer. The Schottky semiconductor layer and the Schottky metal layer form a Schottky contact. In the semiconductor layer, the Schottky semiconductor layer is adjacent to and in contact with the second conductivity type isolation region.
    Type: Application
    Filed: October 20, 2021
    Publication date: May 19, 2022
    Inventors: Kuo-Chin Chiu, Ta-Yung Yang, Chien-Wei Chiu, Wu-Te Weng, Chien-Yu Chen, Chih-Wen Hsiung, Chun-Lung Chang, Kun-Huang Yu, Ting-Wei Liao
  • Publication number: 20210074851
    Abstract: The present invention provides a high voltage device and a manufacturing method thereof. The high voltage device includes: a semiconductor layer, a drift oxide region, a well, a body region, a gate, at least one sub-gate, a source, and a drain. The drift oxide region is located on a drift region in an operation region. The sub-gate is formed on the drift oxide region right above the drift region. The sub-gate is parallel with the gate. A conductive layer of the gate has a first conductivity type, and a conductive layer of the sub-gate has a second conductivity type or is an intrinsic semiconductor structure.
    Type: Application
    Filed: May 6, 2020
    Publication date: March 11, 2021
    Inventors: Chien-Wei Chiu, Ta-Yung Yang, Wu-Te Weng, Chien-Yu Chen, Kun-Huang Yu, Chih-Wen Hsiung, Kuo-Chin Chiu, Chun-Lung Chang
  • Publication number: 20160079443
    Abstract: A JBS diode includes a silicon substrate, a first P doped region, a metal layer, a second P doped region, and a first N doped region. The silicon substrate includes an upper surface. An NBL is provided in the bottom of the silicon substrate. An N well is provided between the upper surface and the NBL. The first P doped region is arranged in the N well, and extending downward from the upper surface. The metal layer covers the upper surface, and located on a side of the first P doped region. The second P doped region is arranged in the N well, extending downward from the upper surface, and located at the other side of the first P doped region. The first N doped region is arranged in the N well, extending downward from the upper surface, and located at the other side of the first P doped region.
    Type: Application
    Filed: October 29, 2014
    Publication date: March 17, 2016
    Inventors: Chung-Yu Hung, Ching-Yao Yang, Tzu-Cheng Kao, Tsung-Yi Huang, Wu-Te Weng
  • Patent number: 9257421
    Abstract: The present invention discloses a transient voltage suppression (TVS) device and a manufacturing method thereof. The TVS device limits a voltage drop between two terminals thereof not to exceed a clamp voltage. The TVS device is formed in a stack substrate including a semiconductor substrate, a P-type first epitaxial layer, and a second epitaxial layer stacked in sequence. In the TVS device, a first PN diode is connected to a Zener diode in series, wherein the series circuit is surrounded by a first shallow trench isolation (STI) region; and a second PN diode is connected in parallel to the series circuit, wherein the second PN diode is surrounded by a second STI region. The first STI region and the second STI region both extend from an upper surface to the second epitaxial layer, but not to the first epitaxial layer.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: February 9, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Kuo-Hsuan Lo, Wu-Te Weng
  • Publication number: 20150364460
    Abstract: The present invention discloses a transient voltage suppression (TVS) device and a manufacturing method thereof. The TVS device limits a voltage drop between two terminals thereof not to exceed a clamp voltage. The TVS device is formed in a stack substrate including a semiconductor substrate, a P-type first epitaxial layer, and a second epitaxial layer stacked in sequence. In the TVS device, a first PN diode is connected to a Zener diode in series, wherein the series circuit is surrounded by a first shallow trench isolation (STI) region; and a second PN diode is connected in parallel to the series circuit, wherein the second PN diode is surrounded by a second STI region. The first STI region and the second STI region both extend from an upper surface to the second epitaxial layer, but not to the first epitaxial layer.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 17, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Kuo-Hsuan Lo, Wu-Te Weng
  • Publication number: 20150097269
    Abstract: The present invention discloses a transient voltage suppression (TVS) device and a manufacturing method thereof. The TVS device includes: a conductive layer; a P-type semiconductor substrate, which is formed on the conductive layer; an N-type buried layer, which is formed on the semiconductor substrate; a P-type lightly doped layer, which is formed on the buried layer; a P-type cap region, which is formed on the lightly doped layer; and an N-type reverse region, which is formed on the cap region, wherein a Zener diode includes the reverse region and the cap region, and an NPN bipolar junction transistor (BJT) includes the reverse region, the cap region, the lightly doped layer and the buried layer.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 9, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Wu-Te Weng
  • Patent number: 8872303
    Abstract: A chip pad structure of an integrated circuit (IC) and the method of forming are disclosed. The chip pad comprises a main pad portion and a ring pad portion. During a charging process involved in forming the chip pad structure, electrical connections from the gate electrodes of MOS transistors in the IC substrate generally are made only to the ring pad portion that has an antenna-to-gate area ratio substantially below a predetermined antenna design rule ratio, and thus is resistant or immune to antenna effect. The main pad portion and the ring pad portion are coupled together through metal bridges formed in an upper interconnect metal layer or in the top conductive pad layer. The chip pad may be used as probe pads on a parametric testline or bonding pads on an IC.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wu-Te Weng, Ji-Shyang Nieh
  • Publication number: 20130277860
    Abstract: A chip pad structure of an integrated circuit (IC) and the method of forming are disclosed. The chip pad comprises a main pad portion and a ring pad portion. During a charging process involved in forming the chip pad structure, electrical connections from the gate electrodes of MOS transistors in the IC substrate generally are made only to the ring pad portion that has an antenna-to-gate area ratio substantially below a predetermined antenna design rule ratio, and thus is resistant or immune to antenna effect. The main pad portion and the ring pad portion are coupled together through metal bridges formed in an upper interconnect metal layer or in the top conductive pad layer. The chip pad may be used as probe pads on a parametric testline or bonding pads on an IC.
    Type: Application
    Filed: June 19, 2013
    Publication date: October 24, 2013
    Inventors: Wu-Te Weng, Ji-Shyang Nieh
  • Patent number: 8470705
    Abstract: A chip pad structure of an integrated circuit (IC) and the method of forming are disclosed. The chip pad comprises a main pad portion and a ring pad portion. During a charging process involved in forming the chip pad structure, electrical connections from the gate electrodes of MOS transistors in the IC substrate generally are made only to the ring pad portion that has an antenna-to-gate area ratio substantially below a predetermined antenna design rule ratio, and thus is resistant or immune to antenna effect. The main pad portion and the ring pad portion are coupled together through metal bridges formed in an upper interconnect metal layer or in the top conductive pad layer. The chip pad may be used as probe pads on a parametric testline or bonding pads on an IC.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 25, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wu-Te Weng, Ji-Shyang Nieh
  • Publication number: 20120156870
    Abstract: A chip pad structure of an integrated circuit (IC) and the method of forming are disclosed. The chip pad comprises a main pad portion and a ring pad portion. During a charging process involved in forming the chip pad structure, electrical connections from the gate electrodes of MOS transistors in the IC substrate generally are made only to the ring pad portion that has an antenna-to-gate area ratio substantially below a predetermined antenna design rule ratio, and thus is resistant or immune to antenna effect. The main pad portion and the ring pad portion are coupled together through metal bridges formed in an upper interconnect metal layer or in the top conductive pad layer. The chip pad may be used as probe pads on a parametric testline or bonding pads on an IC.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 21, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wu-Te Weng, Ji-Shyang Nieh
  • Patent number: 8148797
    Abstract: A chip pad structure of an integrated circuit (IC) and the method of forming are disclosed. The chip pad comprises a main pad portion and a ring pad portion. During a charging process involved in forming the chip pad structure, electrical connections from the gate electrodes of MOS transistors in the IC substrate generally are made only to the ring pad portion that has an antenna-to-gate area ratio substantially below a predetermined antenna design rule ratio, and thus is resistant or immune to antenna effect. The main pad portion and the ring pad portion are coupled together through metal bridges formed in an upper interconnect metal layer or in the top conductive pad layer. The chip pad may be used as probe pads on a parametric testline or bonding pads on an IC.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 3, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wu-Te Weng, Ji-Shyang Nieh
  • Publication number: 20100128486
    Abstract: A light emitting illuminant improves a cover of a conventional light emitting device by designing the internal surface of the cover with an irregular serrated surface, such that after a strong light source of the light emitting device is projected onto the internal surface of the cover, the wavelength and the reflecting/refraction direction of the light source are changed to achieve a mixed light effect and overcome an eyesore effect of the strong light source. The external surface of the cover is designed in an arc shape and with a thickness different from that of the internal surface to constitute a lens mode, such that after the lights of the light source are mixed through the internal surface, the lens with the property of focusing/scattering lights can change the wavelength to amplify and mix the lights, so as to provide a high brightness for the light source.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Inventor: Wu-Te Peng
  • Publication number: 20090321871
    Abstract: A chip pad structure of an integrated circuit (IC) and the method of forming are disclosed. The chip pad comprises a main pad portion and a ring pad portion. During a charging process involved in forming the chip pad structure, electrical connections from the gate electrodes of MOS transistors in the IC substrate generally are made only to the ring pad portion that has an antenna-to-gate area ratio substantially below a predetermined antenna design rule ratio, and thus is resistant or immune to antenna effect. The main pad portion and the ring pad portion are coupled together through metal bridges formed in an upper interconnect metal layer or in the top conductive pad layer. The chip pad may be used as probe pads on a parametric testline or bonding pads on an IC.
    Type: Application
    Filed: June 26, 2008
    Publication date: December 31, 2009
    Inventors: Wu-Te Weng, Ji-Shyang Nieh
  • Publication number: 20070209485
    Abstract: A foldable tool kit including a case having two sideboards and several tools side by side arranged between the two sideboards. Each of the tools has a rod body, a pivoted end formed with a pivot hole and an operation end for driving a threaded member. The tools are pivotally disposed at at least one end of the case via a pivot shaft. The foldable tool kit is flattened and lightweight and has beautified appearance. The volume of the foldable tool kit is minimized so that it is easy to carry and store the foldable tool kit.
    Type: Application
    Filed: July 14, 2006
    Publication date: September 13, 2007
    Inventor: Wu Te