Patents by Inventor Wu Xu

Wu Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160240896
    Abstract: Embodiments of a method for cycling a rechargeable alkali metal battery with high Coulombic efficiency (CE) are disclosed. A slow charge/rapid discharge protocol is used in conjunction with a concentrated electrolyte to achieve high CE in rechargeable lithium and sodium batteries, include anode-free batteries. In some examples, the CE is ?99.8%.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 18, 2016
    Applicant: Battelle Memorial Institute
    Inventors: Ji-Guang Zhang, Brian D.G. Adams, Wu Xu, Jianming Zheng
  • Patent number: 9406960
    Abstract: Improved lithium-sulfur energy storage systems can utilizes LixSy as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising LixSy. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: August 2, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Jie Xiao, Jiguang Zhang, Gordon L. Graff, Jun Liu, Wei Wang, Jianming Zheng, Wu Xu, Yuyan Shao, Zhenguo Yang
  • Publication number: 20160118685
    Abstract: A solid-state lithium ion battery is disclosed. The battery includes an anode containing an anode active material. The battery also includes a cathode containing a cathode active material. The battery further includes a solid-state electrolyte material. The electrolyte material contains a salt or salt mixture with a melting point below approximately 300 degrees Celsius. The battery has an operating temperature of less than about 80 degrees Celsius.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 28, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ji-Guang Zhang, Xiaochuan Lu, Wu Xu, Jiangfeng Qian, Jie Xiao, Bo Liu, Yuyan Shao, Dongping Lu, Daniel Deng, Tianbiao Liu, Qiuyan Li
  • Publication number: 20160072151
    Abstract: Embodiments of a non-aqueous electrolyte for a rechargeable sodium (Na)-based battery comprise a sodium salt and a nonaqueous solvent, the electrolyte having a sodium salt concentration ?2.5 M or a solvent-sodium salt mole ratio ?4:1. Na-based rechargeable batteries including the electrolyte exhibit both high cycling stability and high coulombic efficiency (CE). Some embodiments of the disclosed batteries attain a CE?80% within 10-30 charge-discharge cycles and maintain a CE?80% for at least 100 charge-discharge cycles. In certain embodiments, the battery is an anode-free battery in the as-assembled initial state.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 10, 2016
    Inventors: Ji-Guang Zhang, Ruiguo Cao, Wesley A. Henderson, Kuber Mishra, Wu Xu
  • Publication number: 20160043618
    Abstract: An end cap assembly for an electric motor has a brush assembly, a circuit board, an inductor and a grounded metal element. The brush assembly has a plurality of brushes. The circuit board is fixed relative to the brush assembly. The inductor is electrically connected to the circuit board. The grounded metal element is positioned between the brushes and the inductor to absorb high frequency electromagnetic radiation transmitted from the brushes to the inductor.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 11, 2016
    Inventors: Chi Wai LAI, Qing Bin LUO, Gong Wu XU, Xin Peng WEI, Xiao Lin REN, Gui Hong TIAN, Hong Wei ZHANG, Xia HAN
  • Patent number: 9184436
    Abstract: Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: November 10, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Jiguang Zhang, Gordon L. Graff, Xilin Chen, Fei Ding
  • Patent number: 9130218
    Abstract: Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: September 8, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Wei Wang, Wu Xu, Liyu Li, Zhenguo Yang
  • Patent number: 9115435
    Abstract: Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Gas separation assemblies are provided.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 25, 2015
    Assignee: Battelle Memorial Institute
    Inventors: B. Peter McGrail, Praveen K. Thallapally, Wu Xu
  • Publication number: 20150152566
    Abstract: Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 4, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jiguang Zhang, Wu Xu, Gordon L. Graff, Xilin Chen, Fei Ding, Yuyan Shao
  • Patent number: 9039788
    Abstract: Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein the anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 26, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Nathan L. Canfield, Ji-Guang Zhang, Wei Liu, Jie Xiao, Deyu Wang, Z. Gary Yang
  • Publication number: 20150125759
    Abstract: An energy storage device comprising: (A) an anode comprising graphite; and (B) an electrolyte composition comprising: (i) at least one carbonate solvent; (ii) an additive selected from CsPF6, RbPF6, Sr(PF6)2, Ba(PF6)2, or a mixture thereof; and (iii) a lithium salt.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Hongfa Xiang, Jiguang Zhang, Ruiguo Cao
  • Patent number: 8980460
    Abstract: Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: March 17, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Jiguang Zhang, Wu Xu, Gordon L. Graff, Xilin Chen, Fei Ding, Yuyan Shao
  • Publication number: 20150056488
    Abstract: The Coulombic efficiency of metal deposition/stripping can be improved while also preventing dendrite formation and growth by an improved electrolyte composition. The electrolyte composition also reduces the risk of flammability. The electrolyte composition includes a polymer and/or additives to form high quality SEI layers on the anode surface and to prevent further reactions between metal and electrolyte components. The electrolyte composition further includes additives to suppress dendrite growth during charge/discharge processes. The electrolyte composition can also be applied to lithium and other kinds of energy storage devices.
    Type: Application
    Filed: July 21, 2014
    Publication date: February 26, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ji-Guang Zhang, Wu Xu, Xilin Chen, Jiulin Wang, Yaohui Zhang, Jianfeng Qian
  • Publication number: 20140295298
    Abstract: Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
    Type: Application
    Filed: May 6, 2014
    Publication date: October 2, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jiguang Zhang, Jie Xiao, Jun Liu, Wu Xu, Xiaolin Li, Deyu Wang
  • Publication number: 20140234536
    Abstract: Modifications to the surface of an electrode and/or the surfaces of the electrode material can improve battery performance. For example, the modifications can improve the capacity, rate capability and long cycle stability of the electrode and/or may minimize undesirable catalytic effects. In one instance, metal-ion batteries can have an anode that is coated, at least in part, with a metal fluoride protection layer. The protection layer is preferably less than 100 nm in thickness. The anode material is fabricated according to methods that result in improved anode performance.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: Battelle Memorial Institute
    Inventors: Wu Xu, Wei Wang, Zhenguo Yang, Jiguang Zhang, Daiwon Choi
  • Patent number: 8808404
    Abstract: A method for making a lithium battery or lithium ion battery having nitrogen silylated compounds as additives in a nonaqueous electrolytic solution. Batteries using this electrolytic solution have long cycle life and high capacity retention.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: August 19, 2014
    Assignee: BASF Corporation
    Inventors: Wu Xu, Deng Zhongyi, Bolomey Pascal
  • Patent number: 8765278
    Abstract: Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: July 1, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Ji-Guang Zhang, Jie Xiao, Wu Xu, Deyu Wang, Ralph E. Williford, Jun Liu
  • Patent number: 8764853
    Abstract: Non-aqueous electrolyte solutions capable of protecting negative electrode materials such as lithium metal and carbonaceous materials in energy storage electrochemical cells (e.g., lithium metal batteries, lithium ion batteries and supercapacitors) include an electrolyte salt, a non-aqueous electrolyte solvent mixture, an unsaturated organic compound 4-methylene-1,3-dioxolan-2-one or 4,5-dimethylene-1,3-dioxolan-2-one, and other optional additives. The 1,3-dioxolan-2-ones help to form a good solid electrolyte interface on the negative electrode surface.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 1, 2014
    Assignee: BASF Corporation
    Inventors: Wu Xu, Pascal Bolomey, Martin W. Payne
  • Publication number: 20140178770
    Abstract: The Coulombic efficiency of lithium deposition/stripping can be improved while also substantially preventing lithium dendrite formation and growth using particular electrolyte compositions. Embodiments of the electrolytes include organic solvents and their mixtures to form high-quality SEI layers on the lithium anode surface and to prevent further reactions between lithium and electrolyte components. Embodiments of the disclosed electrolytes further include additives to suppress dendrite growth during charge/discharge processes. The solvent and additive can significantly improve both the Coulombic efficiency and smoothness of lithium deposition. By optimizing the electrolyte formulations, practical rechargeable lithium energy storage devices with significantly improved safety and long-term cycle life are achieved. The electrolyte can also be applied to other kinds of energy storage devices.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Inventors: Wu Xu, Ji-Guang Zhang, Yaohui Zhang, Xilin Chen
  • Patent number: 8758947
    Abstract: Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: June 24, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Jiguang Zhang, Jie Xiao, Jun Liu, Wu Xu, Xiaolin Li, Deyu Wang