Patents by Inventor Wu Xu

Wu Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10170795
    Abstract: Embodiments of a non-aqueous electrolyte for a rechargeable sodium (Na)-based battery comprise a sodium salt and a nonaqueous solvent, the electrolyte having a sodium salt concentration ?2.5 M or a solvent-sodium salt mole ratio ?4:1. Na-based rechargeable batteries including the electrolyte exhibit both high cycling stability and high coulombic efficiency (CE). Some embodiments of the disclosed batteries attain a CE?80% within 10-30 charge-discharge cycles and maintain a CE?80% for at least 100 charge-discharge cycles. In certain embodiments, the battery is an anode-free battery in the as-assembled initial state.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: January 1, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Ji-Guang Zhang, Ruiguo Cao, Wesley A. Henderson, Kuber Mishra, Wu Xu
  • Publication number: 20180251681
    Abstract: Low flammability and nonflammable localized superconcentrated electrolytes (LSEs) for stable operation of electrochemical devices, such as rechargeable batteries, supercapacitors, and sensors, are disclosed. Electrochemical devices, such as rechargeable batteries, supercapacitors, and sensors, including the low flammability and nonflammable LSEs are also disclosed. The low flammability and nonflammable LSEs include an active salt, a solvent comprising a flame retardant compound, wherein the active salt is soluble in the solvent, and a diluent in which the active salt is insoluble or poorly soluble. In certain embodiments, such as when the solvent and diluent are immiscible, the LSE further includes a bridge solvent.
    Type: Application
    Filed: October 19, 2017
    Publication date: September 6, 2018
    Applicant: Battelle Memorial Institute
    Inventors: Ji-Guang Zhang, Shuru Chen, Wu Xu
  • Publication number: 20180096097
    Abstract: A method of comparing three dimensional structure of polymers such as proteins is provided herein comprising the steps of developing at least one key of the protein wherein each said at least one key is based on a quintuple of features consisting of three non-collinear objects in said protein, a representative angle between the three non-collinear objects, and a representative edge length, and comparing the key to either a known database of keys or a key developed for another protein to determine the protein or run a comparison thereof.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 5, 2018
    Inventors: Sumi Singh, Vijay V. Raghavan, Wu Xu
  • Patent number: 9865900
    Abstract: An energy storage device comprising: (A) an anode comprising graphite; and (B) an electrolyte composition comprising: (i) at least one carbonate solvent; (ii) an additive selected from CsPF6, RbPF6, Sr(PF6)2, Ba(PF6)2, or a mixture thereof; and (iii) a lithium salt.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: January 9, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Hongfa Xiang, Jiguang Zhang, Ruiguo Cao
  • Publication number: 20170365876
    Abstract: A solid-state lithium ion battery is disclosed. The battery includes an anode containing an anode active material. The battery also includes a cathode containing a cathode active material. The battery further includes a solid-state electrolyte material. The electrolyte material contains a salt or salt mixture with a melting point below approximately 300 degrees Celsius. The battery has an operating temperature of less than about 80 degrees Celsius.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ji-Guang Zhang, Xiaochuan Lu, Wu Xu, Jiangfeng Qian, Jie Xiao, Bo Liu, Yuyan Shao, Dongping Lu, Daniel Deng, Tianbiao Liu, Qiuyan Li
  • Publication number: 20170338471
    Abstract: High energy density cathode materials, such as LiNixMnyCozO2 (NMC) cathode materials, with improved discharge capacity (hence energy density) and enhanced cycle life are described, A solid electrolyte, such as lithium phosphate infused inside of secondary particles of the cathode material demonstrates significantly enhanced structural integrity without significant or without any observable particle cracking occurring during charge/discharge processes, showing high capacity retention of more than 90% after 200 cycles at room temperature. In certain embodiments the disclosed cathode materials (and cathodes made therefrom) are formed using nickel-rich NMC and/or are used in a battery system with a non-aqueous dual-Li salt electrolytes.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 23, 2017
    Inventors: Jianming Zheng, Jiguang Zhang, Pengfei Yan, Chongmin Wang, Wengao Zhao, Shuru Chen, Wu Xu
  • Publication number: 20160261000
    Abstract: An anode-free rechargeable battery is disclosed. The battery includes an anode current collector and a cathode containing an active cation Mn+, where n=1, 2, or 3. The anode-free rechargeable battery further includes a separator placed between the anode current collector and the cathode. The anode-free rechargeable battery also includes an electrolyte including a salt or salt mixture containing an active cation Mn+ dissolved in a solvent or solvent mixture.
    Type: Application
    Filed: September 10, 2014
    Publication date: September 8, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ji-Guang Zhang, Jiangfeng Qian, Wu Xu, Wesley A. Henderson
  • Publication number: 20160240896
    Abstract: Embodiments of a method for cycling a rechargeable alkali metal battery with high Coulombic efficiency (CE) are disclosed. A slow charge/rapid discharge protocol is used in conjunction with a concentrated electrolyte to achieve high CE in rechargeable lithium and sodium batteries, include anode-free batteries. In some examples, the CE is ?99.8%.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 18, 2016
    Applicant: Battelle Memorial Institute
    Inventors: Ji-Guang Zhang, Brian D.G. Adams, Wu Xu, Jianming Zheng
  • Patent number: 9406960
    Abstract: Improved lithium-sulfur energy storage systems can utilizes LixSy as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising LixSy. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: August 2, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Jie Xiao, Jiguang Zhang, Gordon L. Graff, Jun Liu, Wei Wang, Jianming Zheng, Wu Xu, Yuyan Shao, Zhenguo Yang
  • Publication number: 20160118685
    Abstract: A solid-state lithium ion battery is disclosed. The battery includes an anode containing an anode active material. The battery also includes a cathode containing a cathode active material. The battery further includes a solid-state electrolyte material. The electrolyte material contains a salt or salt mixture with a melting point below approximately 300 degrees Celsius. The battery has an operating temperature of less than about 80 degrees Celsius.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 28, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ji-Guang Zhang, Xiaochuan Lu, Wu Xu, Jiangfeng Qian, Jie Xiao, Bo Liu, Yuyan Shao, Dongping Lu, Daniel Deng, Tianbiao Liu, Qiuyan Li
  • Publication number: 20160072151
    Abstract: Embodiments of a non-aqueous electrolyte for a rechargeable sodium (Na)-based battery comprise a sodium salt and a nonaqueous solvent, the electrolyte having a sodium salt concentration ?2.5 M or a solvent-sodium salt mole ratio ?4:1. Na-based rechargeable batteries including the electrolyte exhibit both high cycling stability and high coulombic efficiency (CE). Some embodiments of the disclosed batteries attain a CE?80% within 10-30 charge-discharge cycles and maintain a CE?80% for at least 100 charge-discharge cycles. In certain embodiments, the battery is an anode-free battery in the as-assembled initial state.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 10, 2016
    Inventors: Ji-Guang Zhang, Ruiguo Cao, Wesley A. Henderson, Kuber Mishra, Wu Xu
  • Publication number: 20160043618
    Abstract: An end cap assembly for an electric motor has a brush assembly, a circuit board, an inductor and a grounded metal element. The brush assembly has a plurality of brushes. The circuit board is fixed relative to the brush assembly. The inductor is electrically connected to the circuit board. The grounded metal element is positioned between the brushes and the inductor to absorb high frequency electromagnetic radiation transmitted from the brushes to the inductor.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 11, 2016
    Inventors: Chi Wai LAI, Qing Bin LUO, Gong Wu XU, Xin Peng WEI, Xiao Lin REN, Gui Hong TIAN, Hong Wei ZHANG, Xia HAN
  • Patent number: 9184436
    Abstract: Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: November 10, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Jiguang Zhang, Gordon L. Graff, Xilin Chen, Fei Ding
  • Patent number: 9130218
    Abstract: Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: September 8, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Wei Wang, Wu Xu, Liyu Li, Zhenguo Yang
  • Patent number: 9115435
    Abstract: Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Gas separation assemblies are provided.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 25, 2015
    Assignee: Battelle Memorial Institute
    Inventors: B. Peter McGrail, Praveen K. Thallapally, Wu Xu
  • Publication number: 20150152566
    Abstract: Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 4, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jiguang Zhang, Wu Xu, Gordon L. Graff, Xilin Chen, Fei Ding, Yuyan Shao
  • Patent number: 9039788
    Abstract: Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein the anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 26, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Nathan L. Canfield, Ji-Guang Zhang, Wei Liu, Jie Xiao, Deyu Wang, Z. Gary Yang
  • Publication number: 20150125759
    Abstract: An energy storage device comprising: (A) an anode comprising graphite; and (B) an electrolyte composition comprising: (i) at least one carbonate solvent; (ii) an additive selected from CsPF6, RbPF6, Sr(PF6)2, Ba(PF6)2, or a mixture thereof; and (iii) a lithium salt.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Hongfa Xiang, Jiguang Zhang, Ruiguo Cao
  • Patent number: 8980460
    Abstract: Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: March 17, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Jiguang Zhang, Wu Xu, Gordon L. Graff, Xilin Chen, Fei Ding, Yuyan Shao
  • Publication number: 20150056488
    Abstract: The Coulombic efficiency of metal deposition/stripping can be improved while also preventing dendrite formation and growth by an improved electrolyte composition. The electrolyte composition also reduces the risk of flammability. The electrolyte composition includes a polymer and/or additives to form high quality SEI layers on the anode surface and to prevent further reactions between metal and electrolyte components. The electrolyte composition further includes additives to suppress dendrite growth during charge/discharge processes. The electrolyte composition can also be applied to lithium and other kinds of energy storage devices.
    Type: Application
    Filed: July 21, 2014
    Publication date: February 26, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ji-Guang Zhang, Wu Xu, Xilin Chen, Jiulin Wang, Yaohui Zhang, Jianfeng Qian