Patents by Inventor Wu Xu

Wu Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8715865
    Abstract: Non-aqueous electrolyte solutions capable of protecting negative electrode materials such as lithium metal and carbonaceous materials in energy storage electrochemical cells (e.g., lithium metal batteries, lithium ion batteries and supercapacitors) include an electrolyte salt, a non-aqueous electrolyte solvent mixture, an unsaturated organic compound 4-methylene-1,3-dioxolan-2-one or 4,5-dimethylene-1,3-dioxolan-2-one, and other optional additives. The 1,3-dioxolan-2-ones help to form a good solid electrolyte interface on the negative electrode surface.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: May 6, 2014
    Assignee: BASF Corporation
    Inventors: Wu Xu, Pascal Bolomey, Martin W. Payne
  • Publication number: 20140113203
    Abstract: Electrolyte additives are described that enhance cycling stability of electrolytes and lithium composite electrodes that prolong cycling lifetimes and improve electrochemical performance of lithium ion batteries. The electrolyte additives minimize voltage fading and capacity fading observed in these batteries by reducing accumulation of passivation films on the electrode surface.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: JIE XIAO, JIANMING ZHENG, JIGUANG ZHANG, EDUARD N. NASYBULIN, WU XU
  • Patent number: 8648609
    Abstract: A testing system utilizing a common power supply and a display device to test different types of a main board circuit is disclosed. The testing system includes a power supply device for outputting a predetermined power; a liquid crystal display for receiving a control signal from the main board circuit to perform a testing procedure; and an adapter. The adapter includes a first circuit coupled electrically between the power supply device and the main board circuit for converting the predetermined power into a power needed by the main board circuit, and a second circuit coupled electrically between the main board circuit and the liquid crystal display for converting a control signal generated by the main board circuit into a signal format required to perform the testing procedure on the liquid crystal display.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: February 11, 2014
    Assignee: Wistron Corporation
    Inventors: Kai-Fu Shi, Zhen-Wu Xu
  • Publication number: 20130273443
    Abstract: Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 17, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ji-Guang Zhang, Jie Xiao, Wu Xu, Deyu Wang, Ralph E. Williford, Deyu Wang
  • Publication number: 20130273459
    Abstract: Ionic conductive chromophores can be used as the positive electrolytes for high-energy density, nonaqueous redox flow battery (NRFB) systems. The nonaqueous nature of the NRFB systems allow for high operation voltage (compared to aqueous systems). Furthermore, the structure modifications to chromophores described herein improve the solubility of the resultant ionic conductive chromophores, thereby allowing them to be used in flow cell configurations.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: Wu Xu, Lelia Cosimbescu, Xiaoliang Wei, Wei Wang, Vincent L. Sprenkle
  • Publication number: 20130266836
    Abstract: Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 10, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wei Wang, Wu Xu, Liyu Li, Zhenguo Yang
  • Publication number: 20130260204
    Abstract: Improved lithium-sulfur energy storage systems can utilizes LixSy as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising LixSy. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jie Xiao, Jiguang Zhang, Gordon L. Graff, Jun Liu, Wei Wang, Jianming Zheng, Wu Xu, Yuyan Shao, Zhenguo Yang
  • Publication number: 20130199936
    Abstract: Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.
    Type: Application
    Filed: June 13, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jiguang Zhang, Wu Xu, Gordon L. Graff, Xilin Chen, Fei Ding, Yuyan Shao
  • Publication number: 20130202956
    Abstract: Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.
    Type: Application
    Filed: June 13, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Jiguang Zhang, Gordon L. Graff, Xilin Chen, Fei Ding
  • Publication number: 20130202920
    Abstract: The performance and the lifetime of energy storage devices can be hindered by the growth of metal dendrites during operation. Electrolytes having dendrite-inhibiting additives can result in significant improvement. In particular, energy storage devices having an electrode containing a metallic element, M1 can be characterized by a non-aqueous, liquid electrolyte having a first salt and a dendrite-inhibiting salt. The first salt can have a cation of M1 and the dendrite-inhibiting salt can have a cation of metallic element, M2, wherein the cation of M2 has an ionic size greater than, or equal to, the cation of M1.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Fei Ding, Jiguang Zhang, Gordon L. Graff, Jie Xiao
  • Patent number: 8481187
    Abstract: Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 9, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Ji-Guang Zhang, Jie Xiao, Wu Xu, Deyu Wang, Ralph E. Williford, Jun Liu
  • Patent number: 8450014
    Abstract: Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.
    Type: Grant
    Filed: October 9, 2010
    Date of Patent: May 28, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Daiwon Choi, Zhenguo Yang, Donghai Wang, Gordon L Graff, Zimin Nie, Vilayanur V Viswanathan, Jason Zhang, Wu Xu, Jin Yong Kim
  • Patent number: 8425662
    Abstract: Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Gas separation assemblies are provided.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: April 23, 2013
    Assignee: Battelle Memorial Institute
    Inventors: B. Peter McGrail, Praveen K. Thallapally, Wu Xu
  • Publication number: 20130095386
    Abstract: Modifications to the surface of an electrode and/or the surfaces of the electrode material can improve battery performance. For example, the modifications can improve the capacity, rate capability and long cycle stability of the electrode and/or may minimize undesirable catalytic effects. In one instance, metal-ion batteries can have an anode that is coated, at least in part, with a metal fluoride protection layer. The protection layer is preferably less than 100 nm in thickness.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Wei Wang, Zhenguo Yang, Jiguang Zhang, Daiwon Choi
  • Publication number: 20120291264
    Abstract: The invention relates to the use of a nitrogen silylated compound as additive in a nonaqueous electrolytic solution. The electrolytic solution is suitable for use in electrochemical cells such as lithium and lithium ion batteries. Batteries using this electrolytic solution have long cycle life and high capacity retention.
    Type: Application
    Filed: August 1, 2012
    Publication date: November 22, 2012
    Applicant: Novolyte Technologies, Inc.
    Inventors: Wu Xu, Zhongyi Deng, Pascal Bolomey
  • Patent number: 8273484
    Abstract: Nitrogen silylated compounds are useful as additives in a nonaqueous electrolytic solution. The electrolytic solution including such additives is suitable for use in electrochemical cells such as lithium and lithium ion batteries. Batteries using this electrolytic solution have long cycle life and high capacity retention.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: September 25, 2012
    Assignee: Novolyte Technologies, Inc.
    Inventors: Wu Xu, Zhongyi Deng, Pascal Bolomey
  • Publication number: 20120180945
    Abstract: Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
    Type: Application
    Filed: March 7, 2012
    Publication date: July 19, 2012
    Inventors: Ji-Guang Zhang, Jie Xiao, Wu Xu, Deyu Wang, Ralph E. Williford
  • Publication number: 20120178001
    Abstract: Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 12, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jiguang Zhang, Jie Xiao, Jun Liu, Wu Xu, Xiaolin Li, Deyu Wang
  • Publication number: 20110255789
    Abstract: A method of automatically extracting data from an electronic document containing a plurality of layout features through progressive refinement is provided. The method includes: analyzing each document to automatically extract images and text features wherein each document includes at least two features that are related to each other, and wherein said analyzing compares extracted features with a first search space of candidate features to try and recognize the extracted features; if one of the at least two related features is not recognized and at least one feature is recognized, selecting a second search space of candidate features in response thereto and in response to predefined rules about the relationship between the two features; and comparing the unrecognized feature with said selected second search space.
    Type: Application
    Filed: January 14, 2011
    Publication date: October 20, 2011
    Applicant: COPANION, INC.
    Inventors: Depankar NEOGI, Steven K. LADD, Girish WELLING, Arjun KUMAR, Vartika SINGH, Matthew DUGGAN, Tushar MAHATA, Xiaobin YANG, Jian-Wu XU, Janice O'NEIL, Nirupam SARKAR, Gopal KRISHNA
  • Publication number: 20110258150
    Abstract: A method of training a document analysis system to extract data from documents is provided. The method includes: automatically analyzing images and text features extracted from a document to associate the document with a corresponding document category; comparing the extracted text features with a set of text features associated with corresponding category of the document, in which the set of text features includes a set of characters, words, and phrases; if the extracted features are found to consist of the characters, words, and phrases belonging to the set of text features associated with the corresponding document category, storing the extracted text features as the data contained in the corresponding document; and, if the extracted text features are found to include at least one text feature that does not belong to the set of text features associated with the corresponding document category, submitting the unrecognized text features to a training phase.
    Type: Application
    Filed: January 14, 2011
    Publication date: October 20, 2011
    Applicant: COPANION, INC.
    Inventors: Depankar NEOGI, Steven K. LADD, Girish WELLING, Arjun KUMAR, Vartika SINGH, Matthew DUGGAN, Tushar MAHATA, Xiaobin YANG, Jian-Wu XU, Janice O'NEIL, Nirupam SARKAR, Gopal KRISHNA