Patents by Inventor Xi-Cheng Zhang
Xi-Cheng Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6977379Abstract: A microscope for producing an image of a target using THz radiation. The microscope comprises a source for providing an optical pump pulse and an optical probe pulse; a THz emitter for activation by pump pulse to emit a THz pulse that irradiates the target to form a target-modified THz pulse; a THz detector for modulating the probe pulse with the target-modified THz pulse to create a modulated optical probe pulse characteristic of the target; an optical detection system for modifying and detecting the modulated optical probe pulse and converting the modulated optical probe pulse to electronic information; and a processor for receiving the electronic information and producing an image of the sample using the electronic information. The THz emitter and detector comprise one or more EO crystals. The target is positioned on one of the EO crystals in a near-field of the THz pulse.Type: GrantFiled: May 8, 2003Date of Patent: December 20, 2005Assignee: Rensselaer Polytechnic InstituteInventors: Xi-Cheng Zhang, Jingzhou Xu, Tao Yuan
-
Publication number: 20050253071Abstract: A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.Type: ApplicationFiled: May 12, 2004Publication date: November 17, 2005Inventors: Bradley Ferguson, Shaohong Wang, Xi-Cheng Zhang
-
Publication number: 20050230625Abstract: A microscope for producing an image of a target using THz radiation. The microscope comprises a source for providing an optical pump pulse and an optical probe pulse; a THz emitter for activation by pump pulse to emit a THz pulse that irradiates the target to form a target-modified THz pulse; a THz detector for modulating the probe pulse with the target-modified THz pulse to create a modulated optical probe pulse characteristic of the target; an optical detection system for modifying and detecting the modulated optical probe pulse and converting the modulated optical probe pulse to electronic information; and a processor for receiving the electronic information and producing an image of the sample using the electronic information. The THz emitter and detector comprise one or more EO crystals. The target is positioned on one of the EO crystals in a near-field of the THz pulse.Type: ApplicationFiled: May 8, 2003Publication date: October 20, 2005Inventors: Xi-Cheng Zhang, Jingzhou Xu, Tao Yuan
-
Publication number: 20050023470Abstract: A method of obtaining a series of images of a three-dimensional object by transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a scanning spot. The object is placed within the Rayleigh range of the focused THz beam and a focusing system is used to transfer the imaging plane from adjacent the object to a desired distance away from the object. A related system is also disclosed.Type: ApplicationFiled: May 12, 2004Publication date: February 3, 2005Inventors: Bradley Ferguson, Shaohong Wang, Xi-Cheng Zhang
-
Patent number: 6844552Abstract: A system for emitting and detecting terahertz frequency electromagnetic pulses. The system comprises a single transceiver device, which may be an electro-optic crystal or photoconductive antenna, for both emitting and detecting the pulses. A related method comprises using a single transceiver device to both emit and detect electromagnetic terahertz frequency pulses. The transceiver device is excited by a pump pulse to emit a terahertz output pulse, which is modulated with a chopper. An object reflects the terahertz pulse and the reflected pulse is detected in the transceiver using a probe pulse. A lock-in amplifier set to the same frequency of the chopper is used to reduce noise in the signal detected by the transceiver. An image of the object may be created using the intensity or the timing of the peak amplitude of the terahertz pulses reflected from the object.Type: GrantFiled: April 5, 2001Date of Patent: January 18, 2005Assignee: Rensselaer Polytechnic InstituteInventors: Xi-Cheng Zhang, Masahiko Tani, Zhiping Jiang, Qin Chen
-
Publication number: 20040262544Abstract: An apparatus and a method for the generation of high-energy terahertz radiation. The apparatus and method function by impinging optical radiation on the surface of a semiconductor substrate, creating a photo-generated dipole emitting terahertz radiation. Because it is desirable to orient the dipole perpendicular to the radiation direction to maximize the power of the terahertz radiation, the surface of the semiconductor is modified to achieve this desirable result. More specifically, three embodiments of the surface modification are disclosed: (1) a grating is created in the top surface of a GaAs semiconductor substrate, (2) an InAs film is formed on a Teflon base to create a grating structure on the semiconductor substrate, and (3) a grating is disposed in the surface of the semiconductor substrate such that the optical radiation engages the substrate at Brewster's angle.Type: ApplicationFiled: April 21, 2004Publication date: December 30, 2004Inventors: Xi-Cheng Zhang, Jingzhou Xu, Kai Liu
-
Patent number: 6782154Abstract: An ultrafast all-optical nonlinear switch. The switch has as components a substrate and a material disposed on the substrate. In one embodiment, the material includes a plurality of single-walled carbon nanotubes and a polymer forming a composite. Preferably, the polymer is polyimide. In another embodiment, the material includes a plurality of single-walled carbon nanotubes incorporated into a silica. The nanotube loading in the material is less than about 0.1 wt %. The material is a substantially transparent, third-order nonlinear optical material. The switch has a switching speed of less than 1 picosecond for light with a wavelength of about 1.55 micrometers. Also disclosed is a process for preparing the ultrafast all-optical nonlinear switch.Type: GrantFiled: February 12, 2002Date of Patent: August 24, 2004Assignee: Rensselaer Polytechnic InstituteInventors: Yiping Zhao, Yuchuan Chen, Xi-Cheng Zhang, Nachiket R. Raravikar, Pulickel M. Ajayan, Toh-Ming Lu, Gwo-Ching Wang, Linda S. Schadler Feist
-
Patent number: 6734974Abstract: A method of improving spatial resolution of a pump-probe terahertz (THz) imaging system for producing an image of an object. The method provides a chopped optical gating beam focused on a semiconductive layer that is either part of the object or a discrete layer placed over the object. The gating beam is focused on a gating pulse focal spot having a diameter effective to cause measurable modulation in transmission of a THz beam through the semiconductive layer when the gating pulse is on as compared to when the gating pulse is off, creating alternating modulated THz beams for detection and processing. Systems for performing the method in transmission and reflection modes are also described.Type: GrantFiled: January 25, 2002Date of Patent: May 11, 2004Assignee: Rensselaer Polytechnic InstituteInventors: Zhiping Jiang, Qin Chen, Xie George Xu, Xi-Cheng Zhang
-
Patent number: 6690001Abstract: A method and apparatus for measuring electromagnetic pulses as a function of time. Radiation measurement, including measurement of single-shot, free-space terahertz femtosecond pulses, is realized using an electro-optical modulator in combination with an optical streak camera. This method and apparatus allow measurement of electromagnetic pulses previously unmeasurable due to the time resolution restrictions dictated by the time-frequency correlation.Type: GrantFiled: April 5, 2001Date of Patent: February 10, 2004Assignee: Rensselaer Polytechnic InstituteInventors: Zhiping Jiang, Xi-Cheng Zhang
-
Publication number: 20040010196Abstract: Systems and methods for reconstructing a plurality of images of an object. An exemplary system includes a radiation source adapted to emit radiation at a plurality of frequencies; a lens with frequency-dependent focal length, such as a Fresnel lens, adapted to receive radiation modified by the object and to project onto a fixed image plane a frequency-dependent image of a slice of the object perpendicular to the radiation path; a sensor for capturing the frequency-dependent image of the object; and apparatus for facilitating creation and capture of a plurality of frequency-dependent images of the object at the plurality of frequencies. A system for reconstructing a tomographic image of the object further includes apparatus for assembling the plurality of frequency-dependent images to reconstruct the tomographic image. Methods and systems are described for use in the visible, audible, and THz frequency ranges and with broadband or narrowband radiation sources.Type: ApplicationFiled: April 17, 2003Publication date: January 15, 2004Inventors: Shaohong Wang, Xi-Cheng Zhang
-
Patent number: 6573700Abstract: Characterization of free-space electromagnetic energy pulses (15) using a chirped optical probe beam is provided. An electro-optic or magneto-optic crystal (14) is positioned such that the free-space radiation and chirped optical probe signal co-propagate, preferably in a co-linear common direction, through the crystal where a temporal waveform of the free-space radiation is linearly encoded onto a wavelength spectrum of the chirped optical probe signal. The temporal waveform of the free-space radiation is then reconstructed using, for example, a dynamic subtraction of the spectral distribution of the chirped optical probe signal without modulation from the spectral distribution of the chirped optical probe signal with modulation by the free-space radiation.Type: GrantFiled: June 6, 2002Date of Patent: June 3, 2003Assignee: Rensselaer Polytechnic InstituteInventors: Xi-Cheng Zhang, Zhiping Jiang
-
Patent number: 6556306Abstract: A non-contact, free-space method for determining the index of refraction of a thin film at a desired angular frequency. The method includes generating an input desired-frequency pulse and an optically detectable probe pulse. The thin film is moved in and out of the path of the input pulse, creating an output pulse that alternates between a transmitted signal, created when the film intercepts the input pulse path, and a reference signal, created when the sample is outside the input pulse path. The output pulse modulates the probe pulse, which is then detected with a photo detector, and the difference between the transmitted signal and the reference signal is calculated. The above steps are repeated over a plurality of delay times between the input pulse and the probe pulse until a complete field waveform of the differential signal is characterized. The index of refraction is calculated as a function of a ratio between the differential signal for the thin film and the reference signal.Type: GrantFiled: January 4, 2001Date of Patent: April 29, 2003Assignee: Rensselaer Polytechnic InstituteInventors: Zhiping Jiang, Ming Li, Xi-Cheng Zhang
-
Publication number: 20030001558Abstract: Characterization of free-space electromagnetic energy pulses (15) using a chirped optical probe beam is provided. An electro-optic or magneto-optic crystal (14) is positioned such that the free-space radiation and chirped optical probe signal co-propagate, preferably in a co-linear common direction, through the crystal where a temporal waveform of the free-space radiation is linearly encoded onto a wavelength spectrum of the chirped optical probe signal. The temporal waveform of the free-space radiation is then reconstructed using, for example, a dynamic subtraction of the spectral distribution of the chirped optical probe signal without modulation from the spectral distribution of the chirped optical probe signal with modulation by the free-space radiation.Type: ApplicationFiled: June 6, 2002Publication date: January 2, 2003Inventors: Xi-Cheng Zhang, Zhiping Jiang
-
Publication number: 20020176650Abstract: An ultrafast all-optical nonlinear switch. The switch has as components a substrate and a material disposed on the substrate. In one embodiment, the material includes a plurality of single-walled carbon nanotubes and a polymer forming a composite. Preferably, the polymer is polyimide. In another embodiment, the material includes a plurality of single-walled carbon nanotubes incorporated into a silica. The nanotube loading in the material is less than about 0.1 wt %. The material is a substantially transparent, third-order nonlinear optical material. The switch has a switching speed of less than 1 picosecond for light with a wavelength of about 1.55 micrometers. Also disclosed is a process for preparing the ultrafast all-optical nonlinear switch.Type: ApplicationFiled: February 12, 2002Publication date: November 28, 2002Inventors: Yiping Zhao, Yuchuan Chen, Xi-Cheng Zhang, Nachiket R. Raravikar, Pulickel M. Ajayan, Toh-Ming Lu, Gwo-Ching Wang, Linda S. Schadler Feist
-
Publication number: 20020153874Abstract: A method of improving spatial resolution of a pump-probe terahertz (THz) imaging system for producing an image of an object. The method provides a chopped optical gating beam focused on a semiconductive layer that is either part of the object or a discrete layer placed over the object. The gating beam is focused on a gating pulse focal spot having a diameter effective to cause measurable modulation in transmission of a THz beam through the semiconductive layer when the gating pulse is on as compared to when the gating pulse is off, creating alternating modulated THz beams for detection and processing. Systems for performing the method in transmission and reflection modes are also described.Type: ApplicationFiled: January 25, 2002Publication date: October 24, 2002Inventors: Zhiping Jiang, Qin Chen, Xie George Xu, Xi-Cheng Zhang
-
Publication number: 20020118371Abstract: A non-contact, free-space method for determining the index of refraction of a thin film at a desired angular frequency. The method includes generating an input desired-frequency pulse and an optically detectable probe pulse. The thin film is moved in and out of the path of the input pulse, creating an output pulse that alternates between a transmitted signal, created when the film intercepts the input pulse path, and a reference signal, created when the sample is outside the input pulse path. The output pulse modulates the probe pulse, which is then detected with a photo detector, and the difference between the transmitted signal and the reference signal is calculated. The above steps are repeated over a plurality of delay times between the input pulse and the probe pulse until a complete field waveform of the differential signal is characterized. The index of refraction is calculated as a function of a ratio between the differential signal for the thin film and the reference signal.Type: ApplicationFiled: January 4, 2001Publication date: August 29, 2002Applicant: Rensselaer Polytechnic InstituteInventors: Zhiping Jiang, Ming Li, Xi-Cheng Zhang
-
Patent number: 6414473Abstract: Characterization of free-space electromagnetic energy pulses (15) using a chirped optical probe beam is provided. An electro-optic or magneto-optic crystal (14) is positioned such that the free-space radiation and chirped optical probe signal co-propagate, preferably in a co-linear common direction, through the crystal where a temporal waveform of the free-space radiation is linearly encoded onto a wavelength spectrum of the chirped optical probe signal. The temporal waveform of the free-space radiation is then reconstructed using, for example, a dynamic subtraction of the spectral distribution of the chirped optical probe signal without modulation from the spectral distribution of the chirped optical probe signal with modulation by the free-space radiation.Type: GrantFiled: July 14, 2000Date of Patent: July 2, 2002Assignee: Rensselaer Polytechnic InstituteInventors: Xi-Cheng Zhang, Zhiping Jiang
-
Publication number: 20010050334Abstract: A method and apparatus for measuring electromagnetic pulses as a function of time. Radiation measurement, including measurement of single-shot, free-space terahertz femtosecond pulses, is realized using an electro-optical modulator in combination with an optical streak camera. This method and apparatus allow measurement of electromagnetic pulses previously unmeasurable due to the time resolution restrictions dictated by the time-frequency correlation.Type: ApplicationFiled: April 5, 2001Publication date: December 13, 2001Inventors: Zhiping Jiang, Xi-Cheng Zhang
-
Patent number: 6111416Abstract: Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.Type: GrantFiled: August 29, 1997Date of Patent: August 29, 2000Assignee: Rensselaer Polytechnic InstituteInventors: Xi-Cheng Zhang, Jenifer Ann Riordan, Feng-Guo Sun
-
Patent number: 6057928Abstract: A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle.Type: GrantFiled: June 15, 1999Date of Patent: May 2, 2000Assignee: Rensselaer Polytechnic InstituteInventors: Ming Li, Xi-Cheng Zhang, Gyu Cheon Cho