Patents by Inventor Xi Wei

Xi Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6207543
    Abstract: A process for making an integrated circuit is disclosed. This technique includes electrically interconnecting a pair of adjacent transistors positioned along a semiconductor substrate by coating with an oxide layer, planarizing the layer, then forming a trench exposing a contact region for each transistor. This trench is filled with a metal, such as tungsten to provide an electrical interconnection of the contact regions. The metal is then planarized to be approximately coplanar with the planarized oxide layer. Metal gate electrodes are formed at the same time as the interconnection. Additional processing includes depositing an IMO layer over the planarized metal and oxide and defining additional interconnections through the IMO layer.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: March 27, 2001
    Assignee: VLSI Technology, Inc.
    Inventors: Ian Robert Harvey, Xi-Wei Lin
  • Patent number: 6153456
    Abstract: An integrated circuit is disclosed that includes a semiconductor substrate, an oxide layer on the substrate, and a polysilicon layer on the oxide layer. The polysilicon layer extends away from the substrate and is doped with elemental boron to increase electrical conductivity thereof. Boron difluoride atoms are implanted in the substrate to define corresponding source and drain regions. Initially, the boron difluoride ions also penetrate a portion of the polysilicon layer. At least a portion of the polysilicon layer is removed to substantially reduce the fluorine-induced migration of boron through the oxide layer to the substrate.
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: November 28, 2000
    Assignee: VLSI Technology, Inc.
    Inventors: Xi-Wei Lin, Emmanual de Muizon
  • Patent number: 6150266
    Abstract: A local interconnect structure that includes a silicon spacer. After deposition of polysilicon gates and formation of spacers on a semiconductor substrate, photolithography and oxide etch steps are performed to remove a portion of a spacer along a segment of the gate where local interconnection is to be formed. A thin screen oxide layer is deposited over the wafer, followed by the formation of diffusion regions. A silicon layer (either amorphous or polycrystalline) is then deposited. The silicon layer is then selectively etched so as to form a silicon spacer along the segment of the gate where local interconnection is to be formed. A conventional SALICIDE process is performed, leading to simultaneous silicidation of the diffusion region, the gate, and the silicon spacer. The resulting local interconnect electrically connects the gate and the diffusion region.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: November 21, 2000
    Assignee: VLSI Technology, Inc.
    Inventors: Xi-Wei Lin, Emmanuel de Muizon
  • Patent number: 6143613
    Abstract: A technique for processing an integrated circuit is disclosed. This technique includes the formation of a polysilicon resistor without silicide next to a polysilicon transistor gate with silicide. Prior to silicidation, an oxide layer coats both polysilicon structures. A portion of the oxide layer is removed by chemical-mechanical polishing to define a generally planar surface from the remaining oxide layer and reexposed portions of each polysilicon structure. A metal layer is deposited on the surface. The portion of the metal layer over the polysilicon resistor structure is removed through a lithographic procedure. A self-aligned silicidation procedure is performed to form a silicide from the metal remaining over the polysilicon gate structure. The formation of both structures is then completed.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: November 7, 2000
    Assignee: VLSI Technology, Inc.
    Inventor: Xi-Wei Lin
  • Patent number: 6093656
    Abstract: A method is provided for eliminating the dishing effect of the chemical mechanical polishing (CMP) process on wide inlaid conductor leads in the layer of dielectric on a semiconductor device. A silicon dioxide dielectric having narrow and wide trenches is first coated with a blanket deposition of conductor material. The conductor material is coated with a photoresist and patterned with a reverse photo image of the trenches. The photoresist is etched leaving the photoresist over the trenches and the conductor material exposed between the trenches. The conductor material is etched removing the conductor material between the trenches and leaving the original thickness of conductor material over the trenches. The remaining photoresist is removed and the conductor material subject to CMP with the original thickness of conductor material acting to prevent dishing.
    Type: Grant
    Filed: February 26, 1998
    Date of Patent: July 25, 2000
    Assignee: VLSI Technology, Inc.
    Inventor: Xi-Wei Lin
  • Patent number: 6084464
    Abstract: An-on-chip decoupling capacitor system for an integrated circuit comprises parallel capacitive and fusible paths between power and ground. The capacitive path includes a field-effect-transistor based capacitor and another "capacitive-path" transistor in series with the capacitor. The fusible path includes an electromigratable fuse and a "fusible-path" transistor in series with the fuse. The capacitive-path transistor, which is controlled by the voltage at a "fusible-path" node between the fuse and the fusible-path transistor, is on during normal operation. The fusible-path transistor, which is controlled by the voltage at a "capacitive-path" node between the capacitor and the capacitive-path transistor, is off during normal operation. During normal operation, the capacitor provides local voltage regulation by sinking charge during voltage surges and supply charge during voltage drops.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: July 4, 2000
    Assignee: VLSI Technology, Inc
    Inventor: Xi-Wei Lin
  • Patent number: 6074921
    Abstract: A technique for self-aligned processing of semiconductor device features is disclosed. This technique includes the formation of a semiconductor device with features extending from the plane of a semiconductor substrate. The features may include polysilicon transistor gates. A coating is deposited on the features and substrate. Chemical mechanical polishing is performed to remove a portion of the coating to expose a surface of the features without lithographic processing. In one form, the exposed surface of the feature is defined by a polysilicon member, and the polysilicon member is at least partially selectively removed and replaced with a metal.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: June 13, 2000
    Assignee: VLSI Technology, Inc.
    Inventor: Xi-Wei Lin
  • Patent number: 6060376
    Abstract: A gate region of a transistor is prepared for receiving a deposit of metal. A chemical mechanical polishing process is performed to reduce thickness of an insulation layer above the gate region. At the end of the chemical mechanical polishing process, a portion of the insulating layer remains above the gate region. An etch process is performed to remove the portion of the insulating layer remaining above the gate region. The etch process also removes a portion of polysilicon within the gate region and removes a top portion of spacers on either side of the gate region. A polysilicon selective etch-back is performed to remove an additional portion of the polysilicon within the gate region.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: May 9, 2000
    Assignee: VLSI Technology, Inc.
    Inventors: Calvin Gabriel, Xi-Wei Lin, Tammy Zheng, Linda Leard, Ian Robert Harvey
  • Patent number: 5990561
    Abstract: A method for producing a glue layer for an integrated circuit which uses tungsten plugs in accordance with the present invention includes: (A) providing a substrate which has a surface, a center, an edge, and a direction normal to the surface; and (B) sputter depositing a glue layer over the surface of the substrate such that an edge thickness of the glue layer measured in the direction normal to the surface at the edge of the substrate is at least 105% of a center thickness of the glue layer measured in the direction normal to the surface at the center of the substrate.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: November 23, 1999
    Assignee: VLSI Technologies, Inc.
    Inventors: Calvin T. Gabriel, Dipankar Pramanik, Xi-Wei Lin
  • Patent number: 5985749
    Abstract: The invention relates to integrated circuits and to via hole structures which include a tungsten silicide barrier layer and to methods of forming such via hole structures. In an exemplary embodiment, a metal layer is formed on a sidewall and a bottom surface of the via hole, a WSi.sub.x barrier layer is formed on the first metal layer by chemical vapor deposition and the via hole is subsequently filled with a metal. The tungsten silicide barrier layer effectively suppresses device degradation resulting from the release of gaseous species from the sidewall of the via hole during plug formation. Semiconductor devices can thus be fabricated which are immune or less susceptible to metal open failures due to incomplete via filling.
    Type: Grant
    Filed: June 25, 1997
    Date of Patent: November 16, 1999
    Assignee: VLSI Technology, Inc.
    Inventors: Xi-Wei Lin, Subhas Bothra
  • Patent number: 5963784
    Abstract: The present invention provides methods of determining a smallest dimension of a fabricated device on a semiconductor substrate, methods of determining width of a structure comprising a refractory metal silicide, methods of determining parameters of a semiconductor device comprising a refractory metal silicide, and methods of determining width of an insulative spacer of a semiconductor device.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: October 5, 1999
    Assignee: VLSI Technology, Inc.
    Inventors: Subhas Bothra, Xi-Wei Lin
  • Patent number: 5953612
    Abstract: A technique for self-aligned silicidation of semiconductor devices is disclosed. This technique includes the formation of polysilicon device features extending from a semiconductor substrate. A coating is deposited on the features and substrate. Chemical mechanical polishing is performed to remove a portion of the coating to expose a polysilicon surface of the features. A metallic layer is formed to contact the exposed polysilicon surface of each of the features. A silicide layer is formed for each feature from the polysilicon and the metallic layer in contact therewith.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: September 14, 1999
    Assignee: VLSI Technology, Inc.
    Inventors: Xi-Wei Lin, Milind Ganesh Weling
  • Patent number: 5933739
    Abstract: The invention relates to integrated circuits and to methods of forming self-aligned silicidation structures. In an exemplary embodiment, a first insulating layer is formed on the surface of a semiconductor substrate which includes an electrode. A second insulating layer is formed over the first insulating layer and a photoresist pattern is formed over a silicide exclusion area. Exposed portions of the first and second insulating layers are removed by one or more etching steps, wherein an etchant used to remove the exposed portions of the second insulating layer has a higher selectivity for the second insulating layer than for the first insulating layer. A silicide layer can then be formed over the surface of the semiconductor substrate except for silicide exclusion areas. Modification of the profiles of features underlying the first insulating layer, such as sidewall spacer and field oxides can thereby be prevented.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: August 3, 1999
    Assignee: VLSI Technology, Inc.
    Inventor: Xi-Wei Lin
  • Patent number: 5895245
    Abstract: A method for preparing a semiconductor substrate and a polysilicon gate for subsequent silicide formation. In one embodiment, the present invention performs an oxide etch to remove oxide from source and drain diffusion regions of the semiconductor substrate and from the top surface of the polysilicon gate. Next, the present invention subjects the semiconductor substrate and the polysilicon gate to an ashing environment. In the present invention, the ashing environment is comprised of H.sub.2 O vapor, and a gaseous fluorocarbon or a fluorinated hydrocarbon gas. In so doing, contaminants introduced into the source and drain diffusion regions of the semiconductor substrate and into the top surface of the polysilicon gate during the oxide etch are removed. Next, the present invention performs a semiconductor wafer surface clean step. The semiconductor wafer surface clean step provides a semiconductor wafer surface which is substantially similar to a virgin silicon surface.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: April 20, 1999
    Assignee: VLSI Technology, Inc.
    Inventors: Ian Robert Harvey, Xi-Wei Lin, Ramiro Solis
  • Patent number: 5882998
    Abstract: Disclosed is a semiconductor fuse structure having a low power programming threshold and anti-reverse engineering characteristics. The fuse structure includes a substrate having a field oxide region. A polysilicon strip that has an increased dopant concentration region lies over the field oxide region. The fuse structure further includes a silicided metallization layer having first and second regions lying over the polysilicon strip. The first region has a first thickness, and the second region has a second thickness that is less than the first thickness and is positioned substantially over the increased dopant concentration region of the polysilicon strip. Preferably, the first region of the silicided metallization layer has a first side and a second side located on opposite sides of the second region, and the resulting fuse structure is substantially rectangular in shape. Therefore, the semiconductor fuse structure can be programmed by breaking the second region.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: March 16, 1999
    Assignee: VLSI Technology, Inc.
    Inventors: Harlan Lee Sur, Jr., Subhas Bothra, Xi-Wei Lin, Martin H. Manley, Robert Payne
  • Patent number: 5883011
    Abstract: A method of removing an inorganic antireflective coating from a semiconductor substrate and a method of forming an integrated circuit (IC) are provided. In the former method, a sacrificial layer is formed over a semiconductor substrate, the layer being selectively removable from the substrate and compatible with photolithography. An inorganic antireflective coating such as SiON is then formed over the sacrificial layer. Thereafter, the sacrificial layer is removed from the substrate to lift the coating off the substrate. Preferred materials for the sacrificial layer include TiN, tetraethyl orthosilicate-based silicon oxide, spin-on-glass (SOG) such as hydrogen silsesquioxane and methyl silsesquioxane, and porous polymeric materials. In the latter method, a patterned layer of photoresist material is formed over the anitreflective coating.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: March 16, 1999
    Assignee: VLSI Technology, Inc.
    Inventors: Xi-Wei Lin, Satyendra Sethi, Henry Lee
  • Patent number: 5880006
    Abstract: A method for forming a semiconductor structure on an active area mesa with minimal loss of field oxide deposited in isolation trenches adjacent the mesa. The trench insulating material is protected by an etch barrier layer having at least a partial resistance to etchants used in further device processing steps. The barrier layer may also be deposited over the surface of the substrate to protect it from damage during device processing. The barrier layer may be removed by an etchant having a selectivity for the barrier layer over that of the surrounding device elements. Final processing of the device may be completed once the barrier layer is removed.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: March 9, 1999
    Assignee: VLSI Technology, Inc.
    Inventors: Xi-Wei Lin, Henry Lee, Ian R. Harvey
  • Patent number: 5854510
    Abstract: Disclosed is a semiconductor fuse structure having a low power programming threshold and anti-reverse engineering characteristics. The fuse structure includes a substrate having a field oxide region. A polysilicon strip that has an increased dopant concentration region lies over the field oxide region. The fuse structure further includes a silicided metallization layer having first and second regions lying over the polysilicon strip. The first region has a first thickness, and the second region has a second thickness that is less than the first thickness and is positioned substantially over the increased dopant concentration region of the polysilicon strip. Preferably, the first region of the silicided metallization layer has a first side and a second side located on opposite sides of the second region, and the resulting fuse structure is substantially rectangular in shape. Therefore, the semiconductor fuse structure can be programmed by breaking the second region.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: December 29, 1998
    Assignee: VLSI Technology, Inc.
    Inventors: Harlan Lee Sur, Jr., Subhas Bothra, Xi-Wei Lin, Martin H. Manley, Robert Payne
  • Patent number: 5834356
    Abstract: Disclosed is a method for making a high resistive structure in a salicided process. The method includes providing a substrate including at least one active device having diffusion regions and a polysilicon gate structure. Depositing a metallization layer over the substrate including at least one active device. Annealing the substrate to cause at least part of metallization layer to form a metallization silicided layer over the substrate that includes the at least one active device. Preferably, the metallization silicided layer lying over the diffusion regions and the polysilicon gate produces a substantially decreased level of sheet resistance. The method also includes forming a mask over the metallization silicided layer, and the mask being configured to leave a portion of the metallization silicided layer that overlies at least one active device exposed.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: November 10, 1998
    Assignee: VLSI Technology, Inc.
    Inventors: Subhas Bothra, Dipankar Pramanik, Xi-Wei Lin
  • Patent number: 5804502
    Abstract: A method for producing a glue layer for an integrated circuit which uses tungsten plugs in accordance with the present invention includes: (A) providing a substrate which has a surface, a center, an edge, and a direction normal to the surface; and (B) sputter depositing a glue layer over the surface of the substrate such that an edge thickness of the glue layer measured in the direction normal to the surface at the edge of the substrate is at least 105% of a center thickness of the glue layer measured in the direction normal to the surface at the center of the substrate.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: September 8, 1998
    Assignee: VLSI Technology, Inc.
    Inventors: Calvin T. Gabriel, Dipankar Pramanik, Xi-Wei Lin