Patents by Inventor Xian J. Ning

Xian J. Ning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6960365
    Abstract: A method of manufacturing a vertical metal-insulator-metal capacitor (MIMCap) (10) in regions (19) of an insulating layer (14). Trenches for both conductive lines and vertical MIMCap's are formed in the insulating layer (14), and regions (19) are covered by resist (20) while the conductive lines (24) are deposited on the wafer. The resist (20) is removed, and the MIMCap dielectric and top plate conductive material (28) is deposited, forming a vertical MIMCap in regions (19).
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: November 1, 2005
    Assignee: Infineon Technologies AG
    Inventor: Xian J. Ning
  • Patent number: 6858441
    Abstract: A method of manufacturing a resistive semiconductor memory device (100), comprising depositing an insulating layer (132) over a workpiece (30), and defining a pattern for a plurality of alignment marks (128) and a plurality of conductive lines (112) within the insulating layer (132). A conductive material is deposited over the wafer to fill the alignment mark (128) and conductive line (112) patterns. The insulating layer (132) top surface is chemically-mechanically polished to remove excess conductive material from the insulating layer (132) and form conductive lines (112), while leaving conductive material remaining within the alignment marks (128). A masking layer (140) is formed over the conductive lines (112), and at least a portion of the conductive material is removed from within the alignment marks (128). The alignment marks (128) are used for alignment of subsequently deposited layers of the resistive memory device (100).
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: February 22, 2005
    Assignee: Infineon Technologies AG
    Inventors: Joachim Nuetzel, Xian J. Ning, Kia-Seng Low, Gill Yong Lee, Rajiv M. Ranade, Ravikumar Ramachandran
  • Patent number: 6815248
    Abstract: A resistive memory device (110) and method of manufacturing thereof comprising a cap layer (140) and hard mask layer (142) disposed over magnetic stacks (114), wherein either the cap layer (140) or hard mask layer (142) comprise WN. A seed layer (136) disposed beneath the magnetic stacks (114) may also be comprised of WN, The use of the material WN improves etch process selectivity during the manufacturing process.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: November 9, 2004
    Assignee: Infineon Technologies AG
    Inventors: Rainer Leuschner, George Stojakovic, Xian J. Ning
  • Patent number: 6794262
    Abstract: A metal-insulator-metal (MIM) capacitor (242/252) structure and method of forming the same. A dielectric layer (214) of a semiconductor device (200) is patterned with a dual damascene pattern having a first pattern (216) and a second pattern (218). The second pattern (218) has a greater depth than the first pattern (216). A conductive layer (226) is formed over the dielectric layer (214) in the first pattern, and a conductive layer is formed over the conductive layer in the first pattern (216). A dielectric layer (232), conductive layer (234), dielectric layer (236) and conductive layer (238) are disposed over the conductive layer (226) of the second pattern (218). Conductive layer (234), dielectric layer (232) and conductive layer (226) form a first MIM capacitor (252). Conductive layer (238), dielectric layer (236) and conductive layer (234) form a second MIM capacitor (242) parallel to the first MIM capacitor (242).
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: September 21, 2004
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Xian J. Ning, Keith Kwong Hon Wong
  • Patent number: 6780775
    Abstract: A method for producing a semiconductor device having an alignment mark, the method comprising forming a first dielectric layer within which a trench having predetermined dimensions is etched and depositing a first layer of metal into the trench; forming a second dielectric layer over the first dielectric layer and over the first layer of metal; simultaneously etching lines and an opening into the second dielectric layer, at least one line used as a via extending to the first layer of metal; filling the lines and the opening, the filling controlled to fill the lines and to under fill the opening; performing chemical mechanical polishing of the plate; and depositing a non-transparent stack of layers onto the metal, whereby the non-transparent stack of layers conforms to the surface of the under filled opening resulting in an alignment mark on the non-transparent stack of layers in order to align successive layers.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: August 24, 2004
    Assignee: Infineon Technologies AG
    Inventor: Xian J. Ning
  • Patent number: 6750115
    Abstract: A method of manufacturing a semiconductor device, comprising depositing an insulating layer over a workpiece, and defining a pattern for at least one alignment marks, at least one MIM capacitor, and a plurality of conductive lines within the insulating layer. A resist is formed over the alignment marks and MIM capacitor pattern, and a conductive material is deposited over the wafer to fill the conductive pattern. The wafer is chemically-mechanically polished to remove excess conductive material from over the insulating layer and form conductive lines. The resist is removed from over the alignment mark and MIM capacitor pattern. MIM capacitor material layers are deposited over the wafer, and the wafer is chemically-mechanically polished to form a MIM capacitor, while leaving the topography of the alignment marks visible on the surface of the wafer, so that the alignment marks may be used for alignment of subsequently deposited layers of the semiconductor device.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 15, 2004
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Xian J. Ning, Keith Kwong Hon Wong
  • Publication number: 20040102014
    Abstract: A method of manufacturing a semiconductor device, comprising depositing an insulating layer over a workpiece, and defining a pattern for at least one alignment marks, at least one MIM capacitor, and a plurality of conductive lines within the insulating layer. A resist is formed over the alignment marks and MIM capacitor pattern, and a conductive material is deposited over the wafer to fill the conductive pattern. The wafer is chemically-mechanically polished to remove excess conductive material from over the insulating layer and form conductive lines. The resist is removed from over the alignment mark and MIM capacitor pattern. MIM capacitor material layers are deposited over the wafer, and the wafer is chemically-mechanically polished to form a MIM capacitor, while leaving the topography of the alignment marks visible on the surface of the wafer, so that the alignment marks may be used for alignment of subsequently deposited layers of the semiconductor device.
    Type: Application
    Filed: November 25, 2002
    Publication date: May 27, 2004
    Inventors: Xian J. Ning, Keith Kwong Hon Wong
  • Patent number: 6723600
    Abstract: A method for making a metal-insulator-metal capacitive structure includes depositing a copper barrier and seed layer over a support structure such as an inter-level dielectric layer, forming a dielectric over the copper barrier and seed layer, and then forming a forming a metal layer over the dielectric. The copper barrier and seed layer forms a bottom plate of a capacitor, and the metal layer forms the upper plate which is separated from the bottom plate by the dielectric. By forming the bottom plate from a copper barrier and seed layer, reduced sheet resistance and surface roughness is achieved, both of which enhance the performance of the capacitor. This performance is further enhanced by forming the capacitor to have a damascene structure. Preferably, at least one conductive interconnect is formed simultaneously with the formation of the capacitor. This is made possible, at least in part, by forming the interconnect using a plate-through mask technique.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: April 20, 2004
    Assignee: International Business Machines Corporation
    Inventors: Kwong H. Wong, Xian J. Ning
  • Patent number: 6713395
    Abstract: A method of forming MIM capacitor top (16) and bottom (12) plates, using a first and second resist (18/20) and a single RIE process. A first conductive layer (12) is deposited over a substrate (10). An insulating layer (14) is deposited over the first conductive layer (12). A second conductive layer (16) is deposited over the insulating layer (14). A first resist (18) is deposited over the second conductive layer (16), and the first resist (18) is patterned. A second resist (20) is deposited over the first resist (18) and patterned. The first and second resist (18/20) patterns are simultaneously transferred to the first and second conductive layers (12) and (16), respectively, by exposure to a single reactive ion etch (RIE) process.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: March 30, 2004
    Assignee: Infineon Technologies AG
    Inventor: Xian J. Ning
  • Publication number: 20040056324
    Abstract: A metal-insulator-metal (MIM) capacitor (242/252) structure and method of forming the same. A dielectric layer (214) of a semiconductor device (200) is patterned with a dual damascene pattern having a first pattern (216) and a second pattern (218). The second pattern (218) has a greater depth than the first pattern (216). A conductive layer (226) is formed over the dielectric layer (214) in the first pattern, and a conductive layer is formed over the conductive layer in the first pattern (216). A dielectric layer (232), conductive layer (234), dielectric layer (236) and conductive layer (238) are disposed over the conductive layer (226) of the second pattern (218). Conductive layer (234), dielectric layer (232) and conductive layer (226) form a first MIM capacitor (252). Conductive layer (238), dielectric layer (236) and conductive layer (234) form a second MIM capacitor (242) parallel to the first MIM capacitor (242).
    Type: Application
    Filed: September 23, 2002
    Publication date: March 25, 2004
    Inventors: Xian J. Ning, Keith Kwong Hon Wong
  • Patent number: 6709874
    Abstract: A semiconductor device (100) having a copper damascene BEOL structure. A metal cap layer (120) is formed over conductive lines (118) to prevent oxidation of the conductive lines (118) during subsequent processing steps. The metal cap layer (120) comprises a material other than the conductive line (118) material that is resistant to oxidation. The structure (100) is particularly beneficial for MRAM devices.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: March 23, 2004
    Assignee: Infineon Technologies AG
    Inventor: Xian J. Ning
  • Patent number: 6706588
    Abstract: Vertical capacitors are formed in a dielectric by a method that forms first and second electrodes spaced apart by a dielectric and substantially perpendicular to the surface of the dielectric. The capacitors may be formed in any dielectric level and are desirably planarized so that the capacitor plate and dielectric form a planar surface.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: March 16, 2004
    Assignee: Infineon Technologies AG
    Inventor: Xian J. Ning
  • Publication number: 20040043579
    Abstract: A method of manufacturing a resistive semiconductor memory device (100), comprising depositing an insulating layer (132) over a workpiece (30), and defining a pattern for a plurality of alignment marks (128) and a plurality of conductive lines (112) within the insulating layer (132). A conductive material is deposited over the wafer to fill the alignment mark (128) and conductive line (112) patterns. The insulating layer (132) top surface is chemically-mechanically polished to remove excess conductive material from the insulating layer (132) and form conductive lines (112), while leaving conductive material remaining within the alignment marks (128). A masking layer (140) is formed over the conductive lines (112), and at least a portion of the conductive material is removed from within the alignment marks (128). The alignment marks (128) are used for alignment of subsequently deposited layers of the resistive memory device (100).
    Type: Application
    Filed: September 4, 2002
    Publication date: March 4, 2004
    Inventors: Joachim Nuetzel, Xian J. Ning, Kia-Seng Low, Gill Yong Lee, Rajiv M. Ranade, Ravikumar Ramachandran
  • Patent number: 6692898
    Abstract: Method of forming a magnetic memory device are disclosed. In one embodiment, a first plurality of conductive lines are formed over a semiconductor workpiece. A plurality of magnetic material lines are formed over corresponding ones of the first plurality of conductive lines and a second plurality of conductive lines are formed over the semiconductor workpiece. The second plurality of conductive lines cross over the first conductive lines and the magnetic material lines. These second lines can be used as a mask to while the magnetic material lines are patterned.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: February 17, 2004
    Assignee: Infineon Technologies AG
    Inventor: Xian J. Ning
  • Patent number: 6677635
    Abstract: A semiconductor device includes a structure composed of a first inter-level-dielectric with an embedded first Cu dual damascene level. A dielectric is coated on a surface of the structure, and a patterned metal layer is coated on he dielectric. A patterned inter-level-dielectric is coated on the patterned metal layer, and a second Cu dual damascene level is embedded in the patterned inter-level-dielectric. The first Cu dual damascene level, second Cu dual damascene level, and patterned metal layer respectively define the bottom, top and middle plates of a stacked MIM capacitor.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: January 13, 2004
    Assignees: Infineon Technologies AG, United Microelectronics Co.
    Inventors: Xian J. Ning, Yi Sheng Hsieh
  • Publication number: 20030224260
    Abstract: A method of manufacturing a resistive semiconductor memory device (10), comprising depositing an insulating layer (34) over a workpiece (30), and defining a pattern for a plurality of alignment marks (22) and a plurality of conductive lines (54) within the insulating layer (34). A resist (50) is formed over the alignment marks (22), and a conductive material (52) is deposited over the wafer to fill the conductive pattern. The wafer is chemically-mechanically polished to remove excess conductive material from over the insulating layer and form conductive lines (54). The resist (50) is removed from over the alignment marks (22), and the alignment marks (22) are used for alignment of subsequently deposited layers of the resistive memory device (10).
    Type: Application
    Filed: June 3, 2002
    Publication date: December 4, 2003
    Applicant: Infineon Technologies North America Corp.
    Inventor: Xian J. Ning
  • Publication number: 20030199104
    Abstract: A resistive memory device (110) and method of manufacturing thereof comprising a cap layer (140) and hard mask layer (142) disposed over magnetic stacks (114), wherein either the cap layer (140) or hard mask layer (142) comprise WN. A seed layer (136) disposed beneath the magnetic stacks (114) may also be comprised of WN. The use of the material WN improves etch process selectivity during the manufacturing process.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Applicant: Infineon Technologies North America Corp.
    Inventors: Rainer Leuschner, George Stojakovic, Xian J. Ning
  • Patent number: 6635496
    Abstract: A method of fabricating an MRAM device includes patterning a magnetic stack material layer (142) using a herd mask (146) formed by a “plate-through” technique. A resist (144) is deposited over magnetic stack material (142), and the resist (144) is patterned, exposing regions of the magnetic stack material (142). A hard mask (146) is formed over the magnetic stack material (142) exposed regions through the resist (144), and the hard mask (146) is used to pattern magnetic tunnel junctions (MTJ's) of the MRAM device. Electroplating, electro-less plating, sputtering, physical vapor deposition (PVD), evaporation deposition, or combinations thereof are used to deposit a material comprising a metal over the magnetic stack material (142) exposed regions to form the hard mask (146).
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: October 21, 2003
    Assignee: Infineon Technologies, AG
    Inventor: Xian J. Ning
  • Patent number: 6620701
    Abstract: A method of manufacturing a metal-insulator-metal capacitor (MIMCap) (36) including first conductive lines (15), capacitor dielectric (26) and second conductive lines (28), the MIMCap (36) including horizontal capacitive portions (32) and vertical capacitive portions (34). The method includes forming first conductive lines (15) in a first insulating layer (14) of a wafer (10), depositing a second insulating layer (22), depositing a resist, removing portions of the resist, removing exposed portions of the second insulating layer (22) and portions of the first insulating layer (14), removing the remaining resist, and then depositing a capacitor dielectric (26) and second conductive lines (28).
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: September 16, 2003
    Assignee: Infineon Technologies AG
    Inventor: Xian J. Ning
  • Patent number: 6611453
    Abstract: An MRAM device (160) and manufacturing process thereof having aluminum conductive lines (134) and (152), with self-aligning cross-points. Conductive lines (134) and metal stack (138) are patterned in a single patterning step and etched. Conductive lines (152) positioned orthogonally to conductive lines (134) are patterned simultaneously with the patterning of metal stack (138) and are etched. The metal stack (138) serves as an anti-reflective coating for conductive lines (152) during the etching process. A multi-level MRAM device may be manufactured in accordance with an embodiment of the invention.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: August 26, 2003
    Assignee: Infineon Technologies AG
    Inventor: Xian J. Ning