Patents by Inventor Xiang Hu

Xiang Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9391846
    Abstract: The policy formulating method includes: receiving, by a policy server, User-Agent user-agent information sent by a gateway, where the User-Agent information carries type information of a terminal or type information of a browser used by a terminal; determining, by the policy server, a type of the terminal according to the User-Agent information; and formulating, by the policy server, a charging policy and/or a QoS quality of service policy according to the type of the terminal. Type information of a user terminal or type information a browser used by a terminal is reported to a policy server; the policy server is capable of correctly distinguishing a terminal type, for example a mobile phone or a PC is surfing the Internet, and then the policy server formulates a corresponding policy to implement Internet access charging and QoS guarantee.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: July 12, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yusheng Hu, Xiang Hu
  • Publication number: 20160155799
    Abstract: A non-planar semiconductor structure includes mixed n-and-p type raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon and silicon germanium, naturally growing into a diamond shape. The surface area of the epitaxial structures is increased by removing portion(s) thereof, masking each type as the other type is grown and then subsequently modified by the removal. The removal may create multi-head (e.g., dual-head) epitaxial structures, together with the neck of the respective raised structure resembling a Y-shape.
    Type: Application
    Filed: January 20, 2016
    Publication date: June 2, 2016
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Xusheng WU, Changyong XIAO, Xiang HU, Wanxun HE
  • Publication number: 20160099171
    Abstract: Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 7, 2016
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Xiang HU, Yuping REN, Duohui BEI, Sipeng GU, Huang LIU
  • Patent number: 9305832
    Abstract: Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: April 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xiang Hu, Yuping Ren, Duohui Bei, Sipeng Gu, Huang Liu
  • Patent number: 9305785
    Abstract: Embodiments of the present invention provide an improved structure and method of contact formation. A cap nitride is removed from a gate in a region that is distanced from a fin. This facilitates reduced process steps, allowing the gate and the source/drain regions to be opened in the same process step. Extreme Ultraviolet Lithography (EUVL) may be used to pattern the resist to form the contacts.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: April 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Andy Chih-Hung Wei, Guillaume Bouche, Gabriel Padron Wells, Xiang Hu
  • Publication number: 20160079242
    Abstract: Provided are approaches for patterning multiple, dense features in a semiconductor device using a memorization layer. Specifically, an approach includes: patterning a plurality of openings in a memorization layer; forming a gap-fill material within each of the plurality of openings; removing the memorization layer; removing an etch stop layer adjacent the gap-fill material, wherein a portion of the etch stop layer remains beneath the gap-fill material; etching a hardmask to form a set of openings above the set of gate structures, wherein the etch to the hardmask also removes the gap-fill material from atop the remaining portion of the etch stop layer; and etching the semiconductor device to remove the hardmask within each of the set of openings. In one embodiment, a set of dummy S/D contact pillars is then formed over a set of fins of the semiconductor device by etching a dielectric layer selective to the gate structures.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: GUILLAUME BOUCHE, Andy Wei, Xiang Hu, Jerome F. Wandell, Sandeep Gaan
  • Patent number: 9281249
    Abstract: Measurement of thickness of layers of a circuit structure is obtained, where the thickness of the layers is measured using an optical critical dimension (OCD) measurement technique, and the layers includes a high-k layer and an interfacial layer. Measurement of thickness of the high-k layer is separately obtained, where the thickness of the high-k layer is measured using a separate measurement technique from the OCD measurement technique. The separate measurement technique provides greater decoupling, as compared to the OCD measurement technique, of a signal for thickness of the high-k layer from a signal for thickness of the interfacial layer of the layers. Characteristics of the circuit structure, such as a thickness of the interfacial layer, are ascertained using, in part, the separately obtained thickness measurement of the high-k layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 8, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Alok Vaid, Abner Bello, Sipeng Gu, Lokesh Subramany, Xiang Hu, Akshey Sehgal
  • Patent number: 9275906
    Abstract: A non-planar semiconductor structure includes mixed n-and-p type raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon and silicon germanium, naturally growing into a diamond shape. The surface area of the epitaxial structures is increased by removing portion(s) thereof, masking each type as the other type is grown and then subsequently modified by the removal. The removal may create multi-head (e.g., dual-head) epitaxial structures, together with the neck of the respective raised structure resembling a Y-shape.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: March 1, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xusheng Wu, Xiang Hu, Changyong Xiao, Wanxun He
  • Publication number: 20160043081
    Abstract: Embodiments of the present invention provide methods of removing fin portions from a finFET. At a starting point, a high-K dielectric layer is disposed on a substrate. A fin hardmask and lithography stack is deposited on the high-k dielectric. A fin hardmask is exposed, and a first portion of the fin hardmark is removed. The lithography stack is removed. A second portion of the fin hardmask is removed. Fins are formed. A gap fill dielectric is deposited and recessed.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: Andy Chih-Hung Wei, Dae-han Choi, Dae Geun Yang, Xiang Hu, Mariappan Hariharaputhiran
  • Patent number: 9236301
    Abstract: Fabrication of through-substrate via (TSV) structures is facilitated by: forming at least one stress buffer within a substrate; forming a through-substrate via contact within the substrate, wherein the through-substrate via structure and the stress buffer(s) are disposed adjacent to or in contact with each other; and where the stress buffer(s) includes a configuration or is disposed at a location relative to the through-substrate via conductor, at least in part, according to whether the TSV structure is an isolated TSV structure, a chained TSV structure, or an arrayed TSV structure, to customize stress alleviation by the stress buffer(s) about the through-substrate via conductor based, at least in part, on the type of TSV structure.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Guoxiang Ning, Xiang Hu, Paul Ackmann, Sarasvathi Thangaraju
  • Publication number: 20150380250
    Abstract: Embodiments of the present invention provide an improved structure and method of contact formation. A cap nitride is removed from a gate in a region that is distanced from a fin. This facilitates reduced process steps, allowing the gate and the source/drain regions to be opened in the same process step. Extreme Ultraviolet Lithography (EUVL) may be used to pattern the resist to form the contacts.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Andy Chih-Hung Wei, Guillaume Bouche, Gabriel Padron Wells, Xiang Hu
  • Publication number: 20150380246
    Abstract: Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
    Type: Application
    Filed: June 26, 2014
    Publication date: December 31, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Xiang HU, Yuping REN, Duohui BEI, Sipeng GU, Huang LIU
  • Patent number: 9224842
    Abstract: Provided are approaches for patterning multiple, dense features in a semiconductor device using a memorization layer. Specifically, an approach includes: patterning a plurality of openings in a memorization layer; forming a gap-fill material within each of the plurality of openings; removing the memorization layer; removing an etch stop layer adjacent the gap-fill material, wherein a portion of the etch stop layer remains beneath the gap-fill material; etching a hardmask to form a set of openings above the set of gate structures, wherein the etch to the hardmask also removes the gap-fill material from atop the remaining portion of the etch stop layer; and etching the semiconductor device to remove the hardmask within each of the set of openings. In one embodiment, a set of dummy S/D contact pillars is then formed over a set of fins of the semiconductor device by etching a dielectric layer selective to the gate structures.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: December 29, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Guillaume Bouche, Andy Chih-Hung Wei, Xiang Hu, Jerome F. Wandell, Sandeep Gaan
  • Publication number: 20150348913
    Abstract: Approaches for providing a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. A previously deposited amorphous carbon layer can be removed from over a mandrel that has been previously formed on a subset of a substrate, such as using a photoresist. A pad hardmask can be formed over the mandrel on the subset of the substrate. This formation results in the subset of the substrate having the pad hardmask covering the mandrel thereon and the remainder of the substrate having the amorphous carbon layer covering the mandrel thereon. This amorphous carbon layer can be removed from over the mandrel on the remainder of the substrate, allowing a set of fins to be formed therein while the amorphous carbon layer keeps the set of fins from being formed in the portion of the substrate that it covers.
    Type: Application
    Filed: August 4, 2015
    Publication date: December 3, 2015
    Applicant: Globalfoundries Inc.
    Inventors: Xiang Hu, Lokesh Subramany, Alok Vaid, Sipeng Gu, Akshey Sehgal
  • Publication number: 20150340296
    Abstract: Approaches for providing a substrate having a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device comprises a finned substrate, and a planar metrology pad formed on the substrate adjacent the fins in a metrology measurement area of the FinFET device. Processing steps include forming a first hardmask over the substrate, forming a photoresist over a portion of the first hardmask in the metrology measurement area of the FinFET device, removing the first hardmask in an area adjacent the metrology measurement area remaining exposed following formation of the photoresist, patterning a set of openings in the substrate to form the set of fins in the FinFET device in the area adjacent the metrology measurement area, depositing an oxide layer over the FinFET device, and planarizing the FinFET device to form the planar metrology pad in the metrology measurement area.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Sipeng Gu, Xiang Hu, Alok Vaid, Lokesh Subramany, Akshey Sehgal
  • Patent number: 9196499
    Abstract: Embodiments of the present invention provide methods of removing fin portions from a finFET. At a starting point, a high-K dielectric layer is disposed on a substrate. A fin hardmask and lithography stack is deposited on the high-k dielectric. A fin hardmask is exposed, and a first portion of the fin hardmark is removed. The lithography stack is removed. A second portion of the fin hardmask is removed. Fins are formed. A gap fill dielectric is deposited and recessed.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: November 24, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Andy Chih-Hung Wei, Dae-han Choi, Dae Geun Yang, Xiang Hu, Mariappan Hariharaputhiran
  • Publication number: 20150332934
    Abstract: A lithographic stack over a raised structure (e.g., fin) of a non-planar semiconductor structure, such as a FinFET, includes a bottom layer of spin-on amorphous carbon or spin-on organic planarizing material, a hard mask layer of a nitride and/or an oxide on the spin-on layer, a layer of a developable bottom anti-reflective coating (dBARC) on the hard mask layer, and a top layer of photoresist. The stack is etched to expose and recess the raised structure, and epitaxial structure(s) are grown on the recess.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 19, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hong YU, Xiang HU, Zhao LUN, Huang LIU
  • Publication number: 20150325482
    Abstract: Integrated circuits with improved gate structures and methods for fabricating integrated circuits with improved gate structures are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with fin structures. A gate-forming material is deposited over the semiconductor substrate and fin structures. The method includes performing a first etch process to etch the gate-forming material to form a gate line having a first side and a second side. The first side and second side of the gate line are bounded with material. The method includes performing a second etch process to etch a portion of the gate line bound by the material to separate the gate line into adjacent gate structures and to define a tip-to-tip distance between the adjacent gate structures.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 12, 2015
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Xiang Hu, Huang Liu
  • Publication number: 20150318351
    Abstract: A non-planar semiconductor structure includes raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon naturally growing into a diamond shape. The surface area of the epitaxial structure may be increased by removing portion(s) thereof. The removal may create a multi-head (e.g., dual-head) epitaxial structure, together with the neck of the raised structure resembling a Y-shape. Raised structures that are not intended to include an epitaxial structure will be masked during epitaxial structure creation and modification. In addition, in order to have a uniform height, the filler material surrounding the raised structures is recessed around those to receive epitaxial structures.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Xusheng WU, Xiang HU, Changyong XIAO, Wanxun HE
  • Publication number: 20150318217
    Abstract: A non-planar semiconductor structure includes mixed n-and-p type raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon and silicon germanium, naturally growing into a diamond shape. The surface area of the epitaxial structures is increased by removing portion(s) thereof, masking each type as the other type is grown and then subsequently modified by the removal. The removal may create multi-head (e.g., dual-head) epitaxial structures, together with the neck of the respective raised structure resembling a Y-shape.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Inventors: Xusheng WU, Xiang HU, Changyong XIAO, Wanxun HE