Patents by Inventor Xiangqun Zeng

Xiangqun Zeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230109455
    Abstract: In an example of a selective, real-time gas sensing method, a gas sample, potentially including a specific gas molecule to be sensed, is supplied to an interface between a working electrode and an ionic liquid electrolyte. Based on at least one unique electrochemical reaction of the specific gas molecule to be sensed, a driving force is implemented to initiate a series of reactions involving the specific gas molecule. In response to the implementation of the driving force, a signal indicative of the specific gas molecule is monitored for.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 6, 2023
    Inventors: Xiangqun Zeng, Yongan Tang
  • Patent number: 11567031
    Abstract: In an example of a selective, real-time gas sensing method, a gas sample, potentially including a specific gas molecule to be sensed, is supplied to an interface between a working electrode and an ionic liquid electrolyte. Based on at least one unique electrochemical reaction of the specific gas molecule to be sensed, a driving force is implemented to initiate a series of reactions involving the specific gas molecule. In response to the implementation of the driving force, a signal indicative of the specific gas molecule is monitored for.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: January 31, 2023
    Assignee: Oakland University
    Inventors: Xiangqun Zeng, Yongan Tang
  • Patent number: 11009487
    Abstract: A multi-modal biosensor system includes a vibrating plate orientated along a plane. An actuator is interfaced with the vibrating plate and operable to vibrate the vibrating plate along the plane. The actuator includes two electrodes rigidly affixed to the vibrating plate. An optical support structure is rigidly affixed to the vibrating plate, and provides an outwardly facing surface to receive a measurement sample. A light source is configured to project light onto the outwardly facing surface of the optical support structure. A light detector is configured to capture light reflected from the outwardly facing surface of the optical support structure. A controller interfaces with the two electrodes and the light detector. The controller operates to detect changes in the vibrating motion of the vibrating plate concurrently with detecting changes in the light captured by the light detector.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: May 18, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, OAKLAND UNIVERSITY
    Inventors: Xudong Fan, Zhizheng Zhang, Xiangqun Zeng
  • Publication number: 20190277811
    Abstract: A multi-modal biosensor system includes a vibrating plate orientated along a plane. An actuator is interfaced with the vibrating plate and operable to vibrate the vibrating plate along the plane. The actuator includes two electrodes rigidly affixed to the vibrating plate. An optical support structure is rigidly affixed to the vibrating plate, and provides an outwardly facing surface to receive a measurement sample. A light source is configured to project light onto the outwardly facing surface of the optical support structure. A light detector is configured to capture light reflected from the outwardly facing surface of the optical support structure. A controller interfaces with the two electrodes and the light detector. The controller operates to detect changes in the vibrating motion of the vibrating plate concurrently with detecting changes in the light captured by the light detector.
    Type: Application
    Filed: September 19, 2017
    Publication date: September 12, 2019
    Inventors: Xudong FAN, Zhizheng ZHANG, Xiangqun ZENG
  • Patent number: 10287616
    Abstract: Real-time and end point determination of antibiotic effects are disclosed herein. In one example, a surface of a label free biosensor is exposed to a sample including a gram-negative bacteria. A frequency and/or a current of the biosensor is then allowed to reach a constant value. The surface of the biosensor is then exposed to an antibiotic. Using the biosensor, i) a frequency change versus time and a damping resistance versus time, or ii) a current versus voltage or the current versus time at a fixed potential, or iii) both i and ii are then measured. The frequency change versus time and the damping resistance versus time and/or the current versus voltage or the current versus time are correlated to determine an effect of the antibiotic on the gram-negative bacteria. Examples of the label free biosensors and methods for detecting gram-negative bacteria using the label free biosensors are also disclosed.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: May 14, 2019
    Assignee: Oakland University
    Inventor: Xiangqun Zeng
  • Publication number: 20190079046
    Abstract: In an example of a selective, real-time gas sensing method, a gas sample, potentially including a specific gas molecule to be sensed, is supplied to an interface between a working electrode and an ionic liquid electrolyte. Based on at least one unique electrochemical reaction of the specific gas molecule to be sensed, a driving force is implemented to initiate a series of reactions involving the specific gas molecule. In response to the implementation of the driving force, a signal indicative of the specific gas molecule is monitored for.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 14, 2019
    Inventors: Xiangqun Zeng, Yongan Tang
  • Patent number: 10197552
    Abstract: In a method for monitoring cell-to-cell interactions, a quartz crystal microbalance surface is exposed to a medium including a first cell. The first cell is exposed to a sample including a suspect cell. The first cell is activated prior to or simultaneously with the first cell exposure. Frequency and motional resistance changes versus time are measured after each of: surface exposure to the medium, first cell activation prior to the exposure to the sample, and first cell exposure to the sample; or after each of: surface exposure to the medium and simultaneous first cell activation and sample exposure. From the frequency and motional resistance changes versus time, any of i) a level of adhesion of the suspect cell to the activated first cell, ii) a type of the suspect cell, iii) a behavior or activity of the suspect cell is determined, or iv) activation of the first cell is determined.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: February 5, 2019
    Assignee: Oakland University
    Inventors: Xiangqun Zeng, Gerard Madlambayan, Liang Tan, Bahareh Pezeshkian, Abdul Rehman
  • Publication number: 20160355866
    Abstract: Real-time and end point determination of antibiotic effects are disclosed herein. In one example, a surface of a label free biosensor is exposed to a sample including a gram-negative bacteria. A frequency and/or a current of the biosensor is then allowed to reach a constant value. The surface of the biosensor is then exposed to an antibiotic. Using the biosensor, i) a frequency change versus time and a damping resistance versus time, or ii) a current versus voltage or the current versus time at a fixed potential, or iii) both i and ii are then measured. The frequency change versus time and the damping resistance versus time and/or the current versus voltage or the current versus time are correlated to determine an effect of the antibiotic on the gram-negative bacteria. Examples of the label free biosensors and methods for detecting gram-negative bacteria using the label free biosensors are also disclosed.
    Type: Application
    Filed: December 31, 2015
    Publication date: December 8, 2016
    Inventor: Xiangqun Zeng
  • Publication number: 20160202235
    Abstract: In a method for monitoring cell-to-cell interactions, a quartz crystal microbalance surface is exposed to a medium including a first cell. The first cell is exposed to a sample including a suspect cell. The first cell is activated prior to or simultaneously with the first cellexposure. Frequency and motional resistance changes versus time are measured after each of: surface exposure to the medium, first cell activation prior to the exposure to the sample, and first cell exposure to the sample; or after each of: surface exposure to the medium and simultaneous first cell activation and sample exposure. From the frequency and motional resistance changes versus time, any of i) a level of adhesion of the suspect cell to the activated first cell, ii) a type of the suspect cell, iii) a behavior or activity of the suspect cell is determined, or iv) activation of the first cell is determined.
    Type: Application
    Filed: December 28, 2015
    Publication date: July 14, 2016
    Inventors: Xiangqun Zeng, Gerard Madlambayan, Liang Tan, Bahareh Pezeshkian, Abdul Rehman
  • Patent number: 9366672
    Abstract: Methods of binding and detecting a microorganism on a solid substrate. The microorganism is bound on a solid substrate covalently bound to a capture agent having a saccharide moiety. A lectin capable of binding to the microorganism and the saccharide moiety of the capture agent is added to the sample to bind the microorganism on the solid substrate. Further provided are biosensor devices, such as a quartz crystal microbalance (QCM) device or a surface plasmon resonance (SPR) device, that incorporate the solid substrate for the detection of microorganisms.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 14, 2016
    Assignee: Oakland University
    Inventors: Xiangqun Zeng, Zhihong Shen
  • Patent number: 9200373
    Abstract: An alkane gas is supplied to an interface between an activated surface of a platinum or palladium working electrode and an ionic liquid electrolyte. The alkane adsorbs at or near an interface complex formed at the interface. The ionic liquid electrolyte is selected from a group consisting of 1-ethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-pentyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-heptyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-octyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-nonyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and 1-decyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and combinations thereof.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: December 1, 2015
    Assignee: Oakland University
    Inventors: Xiangqun Zeng, Zhe Wang
  • Patent number: 9150971
    Abstract: An aerobic method for oxidizing an alkane is disclosed herein. At least a portion of a surface of a platinum working electrode is activated at an interface between the platinum working electrode and an ionic liquid electrolyte (i.e., 1-ethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-pentyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-heptyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-octyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-nonyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and 1-decyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imidem, and combinations thereof). An interface complex is formed at the interface. An alkane gas is supplied to the interface. The alkane adsorbs at or near the interface complex.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: October 6, 2015
    Assignee: Oakland University
    Inventors: Xiangqun Zeng, Zhe Wang
  • Publication number: 20140197045
    Abstract: An alkane gas is supplied to an interface between an activated surface of a platinum or palladium working electrode and an ionic liquid electrolyte. The alkane adsorbs at or near an interface complex formed at the interface. The ionic liquid electrolyte is selected from a group consisting of 1-ethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1 -pentyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1 -heptyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1 -octyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1 -nonyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and 1-decyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imidem, and combinations thereof.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: Oakland University
    Inventors: Xiangqun Zeng, Zhe Wang
  • Publication number: 20140073515
    Abstract: Methods of binding and detecting a microorganism on a solid substrate. The microorganism is bound on a solid substrate covalently bound to a capture agent having a saccharide moiety. A lectin capable of binding to the microorganism and the saccharide moiety of the capture agent is added to the sample to bind the microorganism on the solid substrate. Further provided are biosensor devices, such as a quartz crystal microbalance (QCM) device or a surface plasmon resonance (SPR) device, that incorporate the solid substrate for the detection of microorganisms.
    Type: Application
    Filed: November 30, 2011
    Publication date: March 13, 2014
    Applicant: Oakland University
    Inventors: Xiangqun ZENG, Zhihong SHEN
  • Publication number: 20140061058
    Abstract: An aerobic method for oxidizing an alkane is disclosed herein. At least a portion of a surface of a platinum working electrode is activated at an interface between the platinum working electrode and an ionic liquid electrolyte (i.e., 1-ethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-pentyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-heptyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-octyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-nonyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and 1-decyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imidem, and combinations thereof). An interface complex is formed at the interface. An alkane gas is supplied to the interface. The alkane adsorbs at or near the interface complex.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Inventors: Xiangqun Zeng, Zhe Wang
  • Patent number: 8375768
    Abstract: An electrochemical piezoelectric sensor is disclosed. The sensor includes a piezoelectric substrate, three (or more) electrodes over a first surface of the substrate, and another electrode over a second (opposing) surface of the substrate. An ionic liquid in the form of a film is adhered, bound, immobilized, or otherwise positioned over the substrate and electrodes of the first surface. The ionic liquid film permits the absorption and detection of analytes from a gaseous sample, for environmental gases, example explosive vapors and/or explosive vapor species in the gaseous sample. Detection (optionally including analyte quantitation and qualitative identification) can be performed by both electrochemical and piezoelectric techniques using a single sensor. Systems incorporating and methods of using the electrochemical piezoelectric sensor also are disclosed.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: February 19, 2013
    Assignees: Oakland University, Board of Trustees of Michigan State University
    Inventors: Xiangqun Zeng, Lei Yu, Yue Huang, Andrew J. Mason
  • Patent number: 8148170
    Abstract: An apparatus and methods for binding an analyte of interest in a sample are provided. The apparatus comprises a substrate with an exposed surface with an compound, that is electrostatically charged or capable of forming hydrogen bonds, provided bound to the solid substrate. A recombinant single chain antibody (scFv) molecule specific for the analyte of interest, having one or more amino acids with charged or hydrogen-bond forming sidechains in a linker polypeptide portion, is bound to the layer on the solid substrate. When the analyte of interest is present in the sample the scFv binds the analyte to the solid substrate. The apparatus can be used with an immunoglobulin layer to detect Fc receptors, so as to detect microorganisms such as Staphylococcus aureus having protein A or protein G.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: April 3, 2012
    Assignees: Oakland University, Vanderbilt University
    Inventors: Xiangqun Zeng, Raymond L. Mernaugh
  • Patent number: 8088596
    Abstract: Methods of binding and detecting a microorganism on a solid substrate. The microorganism is bound on a solid substrate covalently bound to a capture agent having a saccharide moiety. A lectin capable of binding to the microorganism and the saccharide moiety of the capture agent is added to the sample to bind the microorganism on the solid substrate. Further provided are biosensor devices, such as a quartz crystal microbalance (QCM) device or a surface plasmon resonance (SPR) device, that incorporate the solid substrate for the detection of microorganisms.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: January 3, 2012
    Assignee: Oakland University
    Inventors: Xiangqun Zeng, Zhihong Shen
  • Publication number: 20110201032
    Abstract: An apparatus and methods for binding an analyte of interest in a sample are provided. The apparatus comprises a substrate with an exposed surface with an compound, that is electrostatically charged or capable of forming hydrogen bonds, provided bound to the solid substrate. A recombinant single chain antibody (scFv) molecule specific for the analyte of interest, having one or more amino acids with charged or hydrogen-bond forming sidechains in a linker polypeptide portion, is bound to the layer on the solid substrate. When the analyte of interest is present in the sample the scFv binds the analyte to the solid substrate. The apparatus can be used with an immunoglobulin layer to detect Fc receptors, so as to detect microorganisms such as Staphylococcus aureus having protein A or protein G.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 18, 2011
    Applicants: Oakland University, Vanderbilt University
    Inventors: Xiangqun Zeng, Raymond L. Mernaugh
  • Patent number: 7943092
    Abstract: A surface plasmon resonance biosensor device and system are provided. The simplicity of SPR biosensor design allows easy integration with both QCM and electrochemistry techniques, not found in current SPR biosensor devices. In some embodiments, the surface plasmon resonance biosensor device has a dual SPR/QCM sample holder which allows simultaneous detection by both surface plasmon resonance and also quartz crystal microbalance (QCM) techniques. In additional embodiments, the surface plasmon resonance biosensor device and/or the dual SPR/QCM technique can be integrated with electrochemistry techniques by incorporate reference and counter electrodes in the SPR or SPR/QCM sample holder. Methods of using the device and system to determine whether an analyte of interest is present in a sample are also provided.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: May 17, 2011
    Assignee: Oakland University
    Inventors: Caide Xiao, Xiangqun Zeng