Patents by Inventor Xianmin Tang

Xianmin Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11171045
    Abstract: Apparatuses and methods to provide electronic devices having metal films are provided. Some embodiments of the disclosure utilize a metallic tungsten layer as a liner that is filled with a metal film comprising cobalt. The metallic tungsten layer has good adhesion to the cobalt leading to enhanced cobalt gap-fill performance.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Yu Lei, Sang-Hyeob Lee, Chris Pabelico, Yi Xu, Tae Hong Ha, Xianmin Tang, Jin Hee Park
  • Publication number: 20210343508
    Abstract: Embodiments of process kits for use in a process chamber are provided herein. In some embodiments, a process kit for use in a process chamber includes: a chamber liner having a tubular body with an upper portion and a lower portion; a confinement plate coupled to the lower portion of the chamber liner and extending radially inward from the chamber liner, wherein the confinement plate includes a plurality of slots; a shield ring disposed within the chamber liner and movable between the upper portion of the chamber liner and the lower portion of the chamber liner; and a plurality of ground straps coupled to the shield ring at a first end of each ground strap of the plurality of ground straps and to the confinement plate at a second end of each ground strap to maintain electrical connection between the shield ring and the chamber liner when the shield ring moves.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Inventors: Andrew NGUYEN, Xue Yang CHANG, Yu LEI, Xianmin TANG, John C. FORSTER, Yogananda Sarode VISHWANATH, Abilash SAINATH, Tza-Jing GUNG
  • Publication number: 20210287898
    Abstract: Method for selectively oxidizing the dielectric surface of a substrate surface comprising a dielectric surface and a metal surface are discussed. Method for cleaning a substrate surface comprising a dielectric surface and a metal surface are also discussed. The disclosed methods oxidize the dielectric surface and/or clean the substrate surface using a plasma generated from hydrogen gas and oxygen gas. The disclosed method may be performed in a single step without the use of separate competing oxidation and reduction reactions. The disclosed methods may be performed at a constant temperature and/or within a single processing chamber.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 16, 2021
    Applicant: Applied Materials, Inc
    Inventors: Bencherki Mebarki, Joung Joo Lee, Yi Xu, Yu Lei, Xianmin Tang, Kelvin Chan, Alexander Jansen, Philip A. Kraus
  • Patent number: 11114320
    Abstract: Embodiments disclosed herein include a processing system and a method of forming a contact. The processing system includes a plurality of process chambers configured to deposit, etch, and/or anneal a source/drain region of a substrate. The method includes depositing a doped semiconductor layer over a source/drain region, forming an anchor layer in a trench, and depositing a conductor in the trench. The method of forming a contact results in reduced contact resistance by using integrated processes, which allows various operations of the source/drain contact formation to be performed within the same processing system.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: September 7, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gaurav Thareja, Takashi Kuratomi, Avgerinos V. Gelatos, Xianmin Tang, Sanjay Natarajan, Keyvan Kashefizadeh, Zhebo Chen, Jianxin Lei, Shashank Sharma
  • Patent number: 11056325
    Abstract: A movable substrate support with a top surface for holding a substrate, when present, is used in conjunction with a cover ring that is stationary to adjust for a shadow effect to control substrate edge uniformity during deposition processes. The cover ring is held stationary by an electrically isolated spacer that engages with a grounded shield in the process volume of a semiconductor process chamber. A controller adjusts the substrate support in response to deposition material on a top surface of the cover ring to maintain the shadow effect and substrate edge uniformity.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: July 6, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Thanh X. Nguyen, Alexander Jansen, Yana Cheng, Randal Schmieding, Yong Cao, Xianmin Tang, William Johanson
  • Patent number: 11037768
    Abstract: Methods and apparatus for controlling the ion fraction in physical vapor deposition processes are disclosed. In some embodiments, a process chamber for processing a substrate having a given diameter includes: an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a rotatable magnetron above the target to form an annular plasma in the peripheral portion; a substrate support disposed in the interior volume to support a substrate having the given diameter; a first set of magnets disposed about the body to form substantially vertical magnetic field lines in the peripheral portion; a second set of magnets disposed about the body and above the substrate support to form magnetic field lines directed toward a center of the support surface; a first power source to electrically bias the target; and a second power source to electrically bias the substrate support.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: June 15, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiaodong Wang, Joung Joo Lee, Fuhong Zhang, Martin Lee Riker, Keith A. Miller, William Fruchterman, Rongjun Wang, Adolph Miller Allen, Shouyin Zhang, Xianmin Tang
  • Patent number: 11011676
    Abstract: Fabrication of gallium nitride-based light devices with physical vapor deposition (PVD)-formed aluminum nitride buffer layers is described. Process conditions for a PVD AlN buffer layer are also described. Substrate pretreatments for a PVD aluminum nitride buffer layer are also described. In an example, a method of fabricating a buffer layer above a substrate involves pre-treating a surface of a substrate. The method also involves, subsequently, reactive sputtering an aluminum nitride (AlN) layer on the surface of the substrate from an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-based gas or plasma.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: May 18, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Rongjun Wang, Nag B. Patibandla, Xianmin Tang, Vivek Agrawal, Cheng-Hsiung Tsai, Muhammad Rasheed, Dinesh Saigal, Praburam Gopal Raja, Omkaram Nalamasu, Anantha Subramani
  • Publication number: 20210123156
    Abstract: Embodiments described herein include a method for depositing a material layer on a substrate while controlling a bow of the substrate and a surface roughness of the material layer. A bias applied to the substrate while the material layer is deposited is adjusted to control the bow of the substrate. A bombardment process is performed on the material layer to improve the surface roughness of the material layer. The bias and bombardment process improve a uniformity of the material layer and reduce an occurrence of the material layer cracking due to the bow of the substrate.
    Type: Application
    Filed: September 10, 2020
    Publication date: April 29, 2021
    Inventors: Zihao YANG, Mingwei ZHU, Nag B. PATIBANDLA, Yong CAO, Shumao ZHANG, Zhebo CHEN, Jean LU, Daniel Lee DIEHL, Xianmin TANG
  • Publication number: 20210118729
    Abstract: Embodiments disclosed herein generally relate to methods of depositing a plurality of layers. A doped copper seed layer is deposited in a plurality of feature definitions in a device structure. A first copper seed layer is deposited and then the first copper seed layer is doped to form a doped copper seed layer, or a doped copper seed layer is deposited directly. The doped copper seed layer leads to increased flowability, reducing poor step coverage, overhang, and voids in the copper layer.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 22, 2021
    Inventors: Shirish PETHE, Fuhong ZHANG, Joung Joo LEE, Rui LI, Xiangjin XIE, Xianmin TANG
  • Patent number: 10950448
    Abstract: Methods and apparatus for control of the quality of films deposited via physical vapor deposition are provided herein. In some embodiments, a method of depositing a film using linear scan physical vapor deposition includes: determining a deposition rate of a material to be deposited on a substrate in a linear scan physical vapor deposition process; calculating a scan rate of the substrate to achieve deposition of the material to a desired thickness in a single pass when deposited at the deposition rate; and performing the linear scan physical vapor deposition process while moving the substrate at the calculated scan rate.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: March 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Joung Joo Lee, Xianmin Tang
  • Publication number: 20210071294
    Abstract: Methods and apparatus for controlling the ion fraction in physical vapor deposition processes are disclosed. In some embodiments, a physical vapor deposition chamber includes: a body having an interior volume and a lid assembly including a target to be sputtered; a magnetron disposed above the target, wherein the magnetron is configured to rotate a plurality of magnets about a central axis of the physical vapor deposition chamber; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support a substrate; a collimator disposed between the target and the substrate support, the collimator having a central region having a first thickness and a peripheral region having a second thickness less than the first thickness; a first power source coupled to the target to electrically bias the target; and a second power source coupled to the substrate support to electrically bias the substrate support.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Inventors: Xiaodong WANG, Joung Joo LEE, Fuhong ZHANG, Martin Lee RIKER, Keith A. MILLER, William FRUCHTERMAN, Rongjun WANG, Adolph Miller ALLEN, Shouyin ZHANG, Xianmin TANG
  • Patent number: 10927451
    Abstract: Methods and apparatus for processing a substrate. The method, for example, includes directing a stream of material from a PVD source at a first non-perpendicular angle to selectively deposit the material on a top portion of one or more features on the substrate and form a first overhang and a second overhang extending beyond a third sidewall and a fourth sidewall that are arranged parallel and opposite to each other and at non-zero angles to a first sidewall and a second sidewall, the first sidewall and the second sidewall defining a length of the one or more features, and the third sidewall and fourth sidewall defining a width of the one or more features; performing an etch process to selectively remove some of the first sidewall and the second sidewall while keeping the third sidewall and fourth sidewall in intact and maintaining the width of the one or more features.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Byeong Chan Lee, Huixiong Dai, Tejinder Singh, Joung Joo Lee, Xianmin Tang
  • Patent number: 10927450
    Abstract: Methods and apparatus for processing a substrate are provided herein. In some embodiments, a method for processing a substrate includes: directing a stream of material from a PVD source toward a surface of a substrate at a first non-perpendicular angle to the plane of the surface to deposit the material on one or more features on the substrate and form a first overhang; etching the layer of the substrate beneath the features selective to the deposited material to form a first part of a pattern; removing the material from the features; directing the stream of material from the PVD source toward the surface of the substrate at a second non-perpendicular angle to the plane of the surface to deposit the material on the features on the substrate and form a second overhang; and etching the layer of the substrate beneath the features selective to the deposited material to form a second part of the pattern.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: February 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Wenhui Wang, Huixiong Dai, Christopher Ngai, Joung Joo Lee, Xianmin Tang
  • Publication number: 20200357616
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate. The method includes forming a plasma in a processing region of a chamber using an RF supply coupled to a multi-compositional target, translating a magnetron relative to the multi-compositional target, wherein the magnetron is positioned in a first position relative to a center point of the multi-compositional target while the magnetron is translating and the plasma is formed, and depositing a multi-compositional film on a substrate.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: Adolph Miller ALLEN, Lara HAWRYLCHAK, Zhigang XIE, Muhammad M. RASHEED, Rongjun WANG, Xianmin TANG, Zhendong LIU, Tza-Jing GUNG, Srinivas GANDIKOTA, Mei CHANG, Michael S. COX, Donny YOUNG, Kirankumar SAVANDAIAH, Zhenbin GE
  • Publication number: 20200350159
    Abstract: Methods and apparatus for method for filling a feature with copper. In some embodiments, the methods include: (a) depositing a first cobalt layer via a physical vapor deposition (PVD) process atop a substrate field and atop a sidewall and a bottom surface of a feature disposed in a substrate to form a first cobalt portion atop the substrate field and a second cobalt portion atop the sidewall; (b) depositing copper atop the first cobalt portion atop the substrate field; and (c) flowing the copper disposed atop the first cobalt portion atop the substrate field over the second cobalt portion and into the feature, wherein the first cobalt portion atop the substrate field reduces the mobility of copper compared to the mobility of copper over the second cobalt portion.
    Type: Application
    Filed: January 25, 2020
    Publication date: November 5, 2020
    Inventors: Rui LI, Xiangjin XIE, Fuhong Zhang, Shirish PETHE, Adolph ALLEN, Lanlan Zhong, Xianmin TANG
  • Patent number: 10815561
    Abstract: Methods and apparatus for asymmetric selective physical vapor deposition (PVD) are provided herein. In some embodiments, a method for physical vapor deposition (PVD) includes providing a stream of a first material from a first PVD source towards a surface of a substrate at a first non-perpendicular angle to the plane of the substrate surface, directing the stream of the first material through a first collimator having at least one opening to limit an angular range of first material passing through the at least one opening; depositing the first material only on a top portion and a first sidewall of at least one feature formed on the substrate surface, and linearly scan the substrate through the stream of first material via the substrate support to deposit the first material only on a top portion and a first sidewall of all features formed on the substrate.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: October 27, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joung Joo Lee, Bencherki Mebarki, Xianmin Tang, Keith Miller, Sree Rangasai Kesapragada, Sudarsan Srinivasan
  • Patent number: 10763090
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: September 1, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adolph Miller Allen, Lara Hawrylchak, Zhigang Xie, Muhammad M. Rasheed, Rongjun Wang, Xianmin Tang, Zhendong Liu, Tza-Jing Gung, Srinivas Gandikota, Mei Chang, Michael S. Cox, Donny Young, Kirankumar Savandaiah, Zhenbin Ge
  • Publication number: 20200255937
    Abstract: Methods and apparatus for processing a substrate. The method, for example, includes directing a stream of material from a PVD source at a first non-perpendicular angle to selectively deposit the material on a top portion of one or more features on the substrate and form a first overhang and a second overhang extending beyond a third sidewall and a fourth sidewall that are arranged parallel and opposite to each other and at non-zero angles to a first sidewall and a second sidewall, the first sidewall and the second sidewall defining a length of the one or more features, and the third sidewall and fourth sidewall defining a width of the one or more features; performing an etch process to selectively remove some of the first sidewall and the second sidewall while keeping the third sidewall and fourth sidewall in intact and maintaining the width of the one or more features.
    Type: Application
    Filed: August 15, 2019
    Publication date: August 13, 2020
    Inventors: BENCHERKI MEBARKI, BYEONG CHAN LEE, HUIXIONG DAI, TEJINDER SINGH, JOUNG JOO LEE, XIANMIN TANG
  • Patent number: 10734235
    Abstract: Systems and methods for sputtering a layer of refractory metal layer onto a barrier layer disposed on a substrate are disclosed herein. In one or more embodiments, a method of sputter depositing a tungsten structure in an integrated circuit includes: moving a substrate into a plasma processing chamber and onto a substrate support in opposition to a sputter target assembly comprising a tungsten target having no more than ten parts per million of carbon and no more than ten parts per million of oxygen present as impurities; flowing krypton into the plasma processing chamber; and exciting the krypton into a plasma to deposit, by sputtering, a tungsten film layer on a material layer of a substrate supported by the substrate support. In some embodiments, the target assembly further includes a titanium backing plate and an aluminum bonding layer disposed between the titanium backing plate and the tungsten target.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: August 4, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jothilingam Ramalingam, Thanh X. Nguyen, Zhiyong Wang, Jianxin Lei, Xianmin Tang
  • Patent number: 10718049
    Abstract: Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 21, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad Rasheed, Rongjun Wang, Zhendong Liu, Xinyu Fu, Xianmin Tang