Patents by Inventor Xiao Guan

Xiao Guan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971409
    Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: April 30, 2024
    Assignee: Bruker Cellular Analysis, Inc.
    Inventors: Kevin T. Chapman, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, Jr., Xiao Guan Radstrom, Jason M. McEwen, Gang F. Wang, George L. Fox, Peggy A. Radel
  • Patent number: 11958681
    Abstract: The present invention relates to a ventilating and blanking device for a coal storage Eurosilo. The ventilating and blanking device includes a top blanking pipe, an axial flow fan and a baffle door, the top blanking pipe including a first pipeline and a second pipeline, an air supply pipe is connected to a side wall of the second pipeline, and the baffle door is connected to a driving mechanism; during blanking, the driving mechanism drives the baffle door so as to make the baffle door close the air supply pipe and the axial flow fan is shut off; and during ventilation, the driving mechanism drives the baffle door so as to make the baffle door close the first pipeline, and the axial flow fan is turned on. Compared with the prior art, the present invention has the advantages of ventilation efficiency, good ventilation effect, etc.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: April 16, 2024
    Assignees: HUANENG POWER INTERNATIONAL, INC., SHANGHAI SHIDONGKOU FIRST POWER PLANT
    Inventors: Zhong Ni, Zhiwei Sang, Zhongming Huang, Xin Hu, Pengxia Ni, Ping Zhu, Qinghan Zheng, Runhan Liu, Xiao Zhang, Jinxin Yu, Haifeng Guan, Jialei Deng
  • Publication number: 20240109942
    Abstract: A cholecystokinin (CCK) secretion-promoting peptide targeting a calcium-sensing receptor (CaSR), and a preparation method and use thereof are provided. The CCK secretion-promoting peptide targeting a CaSR is a QGDVVALPA active peptide and has an amino acid sequence as follows: Gln-Gly-Asp-Val-Val-Ala-Leu-Pro-Ala. Compared with the prior art, the active peptide is allowed to be artificially synthesized through a chemical solid phase synthesis method, and is allowed to be obtained by an enzymatic hydrolysis of oat protein, separation and purification. The active peptide is allowed to target the CaSR of an intestinal endocrine cell membrane to activate a Gq signal pathway, thereby further increasing an intracellular calcium ion concentration to significantly promote secretion of CCK by an intestinal endocrine cell; and moreover, the active peptide has the advantages of safety, no toxic side effect, tolerance to digestive enzyme hydrolysis of a gastrointestinal tract, easy absorption, etc.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Applicant: University of Shanghai for Science and Technology
    Inventors: Xiao GUAN, Hongdong SONG, Kai HUANG, Qiuyun FU
  • Publication number: 20240111550
    Abstract: A computer-implemented process is disclosed. An application is loaded into a local address space. A request by the application to load a target shared library is intercepted by an interceptor. Using the interceptor and based upon the request being intercepted, a shared library correlation table is searched for a loading count and a loading policy associated with the target shared library. Based upon the loading count and the loading policy, a selection is made between loading the target shared library as a shared library container, and loading the target shared library into the local address space. The target shared library is loaded based upon the selecting. The loading count represents a number of times the target shared library was loaded, and the loading policy indicates how the target shared library is to be loaded.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Heng Wang, Xiao Ling Chen, Xin Peng Liu, Tao Guan, Wei Wu
  • Publication number: 20230382984
    Abstract: An anti-TRABD monoclonal antibody and use thereof are provided. By establishing a culture system of monocyte-induced dendritic cells and killer CD8+ T cells, it can be verified whether TRABD2A, TRABD2B or TRABD2A and TRABD2B expression is present on the surface of CD8+ T cell membrane, and the cells have enhanced killing effect against target cells after TRABD2A, TRABD2B or TRABD2A and TRABD2B is inhibited, so that the TRABD2A, TRABD2B or TRABD2A and TRABD2B protein can be used as an immune checkpoint. Meanwhile, by obtaining an anti-TRABD2A, TRABD2B or TRABD2A and TRABD2B monoclonal antibody, it can be proven that anti-TRABD2A monoclonal antibody, anti-TRABD2B monoclonal antibody or anti-TRABD2A and TRABD2B monoclonal antibody can improve the killing effect of CD8+ T cells on target tumor cells, and thus can be used as an immune checkpoint inhibitor.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Inventor: Xiao GUAN
  • Publication number: 20230100306
    Abstract: Bioreactors configured to scale-up the production of greater quantities of cells at relatively low cost are provided. These bioreactors may be utilized in the production of large-scale quantities of cell-based meat and cell-based fat. The bioreactors may be reusable and may have a high surface area-to-volume ratio for adherent cell expansion. The bioreactors may be capable of yielding a large number of adherent cells per bioreactor unit.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 30, 2023
    Inventors: George C. ENGELMAYR, Jr., Ilan Eitan FISCHER, Andre BERGERON, Saam SHAHROKHI, William C. PATON, Viktor MACIAG, Xiao Guan RADSTROM, Amelia BEVILLE, Robert YAMAN
  • Publication number: 20220356429
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 10, 2022
    Inventors: Randall D. LOWE, JR., Kristin G. BEAUMONT, Aathavan KARUNAKARAN, Natalie C. MARKS, Jason M. MCEWEN, Mark P. WHITE, J. Tanner NEVILL, Gang F. WANG, Andrew W. MCFARLAND, Daniele Malleo, Keith J. BREINLINGER, Xiao GUAN, Kevin T. CHAPMAN
  • Patent number: 11365381
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: June 21, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Randall D. Lowe, Jr., Kristin G. Beaumont, Aathavan Karunakaran, Natalie C. Marks, Jason M. McEwen, Mark P. White, J. Tanner Nevill, Gang F. Wang, Andrew W. McFarland, Daniele Malleo, Keith J. Breinlinger, Xiao Guan, Kevin T. Chapman
  • Patent number: 11273177
    Abstract: The present disclosure provides methods of preparing tumor infiltrating cells engineered to express a pro-inflammatory polypeptide. The pro-inflammatory polypeptide is expressed from the tumor infiltrating cell to counter a generally immunosuppressive state in and around tumors resulting from an imbalance between the number and activation state of immune effector cells versus those of suppressor cells. Delivering the proinflammatory polypeptide via expression from the TICs, as distinct from systemic administration, reduces side effects from increased inflammation at sides remote from a tumor to be treated.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: March 15, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T Chapman, Xiaohua Wang, Xiao Guan Radstrom, Yelena Bronevetsky, Guido K Stadler, Gregory G Lavieu, Annamaria Mocciaro
  • Publication number: 20220026298
    Abstract: The present disclosure provides a conductive paste for preparing flexible porous piezoresistive sensor, a method for making the same, and application thereof. The conductive paste includes a conductive carbon material, a sacrificial template and a high molecular polymer matrix. The high molecular polymer matrix includes a high molecular polymer and an organic solvent, and the mass ratio of the high molecular polymer to the organic solvent is 1:2 to 1:3; and based on the total mass of the conductive carbon material, the sacrificial template and the high molecular polymer, the mass percentage of the conductive carbon material is 2%-5%, the mass percentage of the sacrificial template is 75%-85%, and the mass percentage of the high molecular polymer is 10%-23%. This disclosure uses a sacrificial template with adjustable particle size to prepare conductive paste, greatly increasing number of nanopores or micropores after conductive paste is formed into a film.
    Type: Application
    Filed: January 29, 2019
    Publication date: January 27, 2022
    Applicant: Shenzhen University
    Inventors: Zhengchun PENG, Ziya WANG, Qi ZHANG, Xiao GUAN, Wan'er LIN, Xiaojun TIAN
  • Patent number: 11103870
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: August 31, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L. S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
  • Publication number: 20210071124
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Application
    Filed: July 2, 2020
    Publication date: March 11, 2021
    Inventors: Randall D. LOWE, JR., Kristin G. BEAUMONT, Aathavan KARUNAKARAN, Natalie C. MARKS, Jason M. MCEWEN, Mark P. WHITE, J. Tanner NEVILL, Gang F. WANG, Andrew W. MCFARLAND, Daniele Malleo, Keith J. BREINLINGER, Xiao GUAN, Kevin T. CHAPMAN
  • Publication number: 20210069698
    Abstract: Functional assays using reporter cell assays are described which probe the activity of at least one cell of interest. The ability to probe at least one cell is provided by using the microfluidic methods, devices and kits described herein. Assays combining both reporter cell signaling as well as binding assay signaling for at least one cell is also described herein.
    Type: Application
    Filed: July 14, 2020
    Publication date: March 11, 2021
    Inventors: Xiao Guan, Mark P. White, Jason M. McEwen, Gang F. Wang, Kevin T. Chapman, Xiaohua Wang, Christine E. Sun
  • Publication number: 20200400669
    Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 24, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, JR., Xiao Guan Radstrom, Jason M. McEwen, Gang F. Wang, George L. Fox, Peggy A. Radel
  • Patent number: 10751715
    Abstract: Functional assays using reporter cell assays are described which probe the activity of at least one cell of interest. The ability to probe at least one cell is provided by using the microfluidic methods, devices and kits described herein. Assays combining both reporter cell signaling as well as binding assay signaling for at least one cell is also described herein.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: August 25, 2020
    Assignee: Berkeley Lights, Inc.
    Inventors: Xiao Guan, Mark P. White, Jason M. McEwen, Gang F. Wang, Kevin T. Chapman, Xiaohua Wang, Christine E. Sun
  • Patent number: 10723988
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: July 28, 2020
    Assignee: Berkeley Lights, Inc.
    Inventors: Randall D. Lowe, Jr., Kristin Beaumont, Aathavan Karunakaran, Natalie Marks, Jason M. McEwen, Mark P. White, J. Tanner Nevill, Gang F. Wang, Andrew W. McFarland, Daniele Malleo, Keith J. Breinlinger, Xiao Guan, Kevin T. Chapman
  • Patent number: 10712344
    Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: July 14, 2020
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, George L. Fox, Peggy A. Radel, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, Jr., Xiao Guan Radstrom, Jason M. McEwen, Gang F. Wang
  • Publication number: 20190217297
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 18, 2019
    Applicant: Berkeley Lights, Inc.
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L.S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
  • Patent number: 10239058
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: March 26, 2019
    Assignee: Berkeley Lights, Inc.
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L. S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
  • Publication number: 20180147576
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 31, 2018
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L.S. Kurz, Patricia A. Dyck, Ravi K. Ramenani