Patents by Inventor Xiao Guan

Xiao Guan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180147576
    Abstract: Methods are described herein for isolating clonal populations of cells having a defined genetic modification. The methods are performed, at least in part, in a microfluidic device comprising one or more sequestration pens. The methods include the steps of: maintaining individual cells (or precursors thereof) that have undergone a genomic editing process in corresponding sequestration pens of a microfluidic device; expanding the individual cells into respective clonal populations of cells; and detecting, in one or more cells of each clonal population, the presence of a first nucleic acid sequence that is indicative of the presence of an on-target genome edit in the clonal population of cells. Also described are methods of performing genome editing within a microfluidic device, and compositions comprising one or more clonal populations of cells generated according to the methods disclosed herein.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 31, 2018
    Inventors: Gregory G. Lavieu, Annamaria Mocciaro, Xiao Guan Radstrom, Jason M. McEwen, Magali Soumillon, J. Tanner Nevill, Volker L.S. Kurz, Patricia A. Dyck, Ravi K. Ramenani
  • Publication number: 20170276679
    Abstract: A method of preparing an antibody therapeutic is provided comprising: (a) providing a dissociated cell sample from at least one solid tumor sample obtained from a patient; (b) loading the dissociated cell sample into a microfluidic device having a flow region and at least one isolation region fluidically connected to the flow region; (c) moving at least one B cell from the dissociated cell sample into at least one isolation region in the microfluidic device, thereby obtaining at least one isolated B cell; and (d) using the microfluidic device to identify at least one B cell that produces antibodies capable of binding to cancer cells. The cancer cells can be the patient's own cancer cells. Also provided are methods of treating patients, methods of labeling or detecting cancer, engineered T or NK cells comprising antibodies or fragments thereof, and engineered antibody constructs.
    Type: Application
    Filed: January 13, 2017
    Publication date: September 28, 2017
    Inventors: Kevin T. Chapman, Mark P. White, Xiaohua Wang, Minha Park, Guido K. Stadler, Randall D. Lowe, Jr., Xiao Guan, Jason M. McEwen, Gang Wang, George L. Fox, Peggy A. Radel
  • Publication number: 20170224734
    Abstract: The present disclosure provides methods of preparing tumor infiltrating cells engineered to express a pro-inflammatory polypeptide. The pro-inflammatory polypeptide is expressed from the tumor infiltrating cell to counter a generally immunosuppressive state in and around tumors resulting from an imbalance between the number and activation state of immune effector cells versus those of suppressor cells. Delivering the proinflammatory polypeptide via expression from the TICs, as distinct from systemic administration, reduces side effects from increased inflammation at sides remote from a tumor to be treated.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 10, 2017
    Inventors: Kevin T Chapman, Xiaohua Wang, Xiao Guan Radstrom, Yelena Bronevetsky, Guido K Stadler, Gregory G Levieu, Annamaria Mocciaro
  • Publication number: 20160312165
    Abstract: Systems, methods and kits are described for culturing one or more biological cells in a microfluidic device, including provision of nutrients and gaseous components configured to enhance cell growth, viability, portability, or any combination thereof. In some embodiments, culturing a single cell may produce a clonal population in the microfluidic device.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Inventors: Randall D. Lowe, JR., Kristin Beaumont, Aathavan Karunakaran, Natalie Marks, Jason M. McEwen, Mark P. White, J. Tanner Nevill, Gang F. Wang, Andrew W. McFarland, Daniele Malleo, Keith J. Breinlinger, Xiao Guan, Kevin T. Chapman
  • Patent number: 7252697
    Abstract: A method for making controlled-release ammonium phosphate fertilizer has the following acts of: cracking, pulverizing, blending, aging, drying, and adding release-controlling materials into an ammonium phosphate slurry during preparing processes or adding release-controlling materials in achieved ammonium phosphate powder. Selectively, sulfuric acid is added into the mixture of the release-controlling materials and the ammonium phosphate slurry or ammonium phosphate powder to acidify the mixture. In this method, the release-controlling material combines with the ammonium phosphate by chemical bonding to control the release of nitrogen and phosphorus nutrients to enhance the use efficiency and elongate fertilization effect of the controlled-release ammonium phosphate fertilizer.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: August 7, 2007
    Assignee: South China Agricultural University
    Inventors: Zongwen Liao, Song Bo, Xiaoyun Mao, Ping-Xiao Guan
  • Publication number: 20040003636
    Abstract: A method for making controlled-release ammonium phosphate fertilizer has the following acts of: cracking, pulverizing, blending, aging, drying, and adding release-controlling materials into an ammonium phosphate slurry during preparing processes or adding release-controlling materials in achieved ammonium phosphate powder. Selectively, sulfuric acid is added into the mixture of the release-controlling materials and the ammonium phosphate slurry or ammonium phosphate powder to acidify the mixture. In this method, the release-controlling material combines with the ammonium phosphate by chemical bonding to controll the release of nitrogen and phosphorus nutrients to enhance the use efficiency and elongate fertilization effect of the controlled-release ammonium phosphate fertilizer.
    Type: Application
    Filed: July 2, 2003
    Publication date: January 8, 2004
    Inventors: Zongwen Liao, Song Bo, Xiaoyun Mao, Ping-Xiao Guan