Patents by Inventor Xiao Zhong Zhu
Xiao Zhong Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9698229Abstract: A semiconductor structure includes at least a fin-shaped structure, a gate, a source/drain region, an interdielectric layer and an epitaxial structure. At least a fin-shaped structure is located on a bottom substrate. The gate covers the fin-shaped structure. The source/drain region is located in the fin-shaped structure next to the gate. The interdielectric layer covers the gate and the fin-shaped structure, wherein the interdielectric layer has a plurality of contact holes, respectively exposing at least a part of the source/drain region. The epitaxial structure is located in each of the contact holes, directly contacts and is only located on the source/drain region. Additionally, a semiconductor process formed said semiconductor structure is also provided.Type: GrantFiled: January 17, 2012Date of Patent: July 4, 2017Assignee: UNITED MICROELECTRONICS CORP.Inventors: Duan Quan Liao, Yikun Chen, Ching-Hwa Tey, Xiao Zhong Zhu
-
Publication number: 20170162450Abstract: A semiconductor structure includes at least a fin-shaped structure, a gate, a source/drain region, an interdielectric layer and an epitaxial structure. At least a fin-shaped structure is located on a bottom substrate. The gate covers the fin-shaped structure. The source/drain region is located in the fin-shaped structure next to the gate. The interdielectric layer covers the gate and the fin-shaped structure, wherein the interdielectric layer has a plurality of contact holes, respectively exposing at least a part of the source/drain region. The epitaxial structure is located in each of the contact holes, directly contacts and is only located on the source/drain region. Additionally, a semiconductor process formed said semiconductor structure is also provided.Type: ApplicationFiled: February 16, 2017Publication date: June 8, 2017Inventors: Duan Quan Liao, Yikun Chen, Ching-Hwa Tey, Xiao Zhong Zhu
-
Patent number: 9401280Abstract: A semiconductor process includes the following steps. A first gate is formed on a substrate, wherein the first gate includes a stacked gate on the substrate and a cap on the stacked gate. A spacer material is formed to conformally cover the first gate and the substrate. The spacer material is etched to form a spacer on a side of the first gate and a block on the other side of the first gate corresponding to the side. A material covers the substrate, the block, the first gate and the spacer, wherein the top surface of the material is a flat surface. The block, the spacer and the material are pulled down with the same pulling selectivity so that an assisting gate is formed from the block and a selective gate is formed from the spacer.Type: GrantFiled: May 28, 2014Date of Patent: July 26, 2016Assignee: UNITED MICROELECTRONICS CORP.Inventors: Duan Quan Liao, Wei Cheng, Yikun Chen, Ching Hwa Tey, Xiao Zhong Zhu
-
Patent number: 9385193Abstract: A FINFET transistor structure includes a substrate including a fin structure. Two combined recesses embedded within the substrate, wherein each of the combined recesses includes a first recess extending in a vertical direction and a second recess extending in a lateral direction, the second recess has a protruding side extending to and under the fin structure. Two filling layers respectively fill in the combined recesses. A gate structure crosses the fin structure.Type: GrantFiled: May 27, 2014Date of Patent: July 5, 2016Assignee: UNITED MICROELECTRONICS CORP.Inventors: Rai-Min Huang, Sheng-Huei Dai, Chen-Hua Tsai, Duan Quan Liao, Yikun Chen, Xiao Zhong Zhu
-
Patent number: 9276057Abstract: A capacitor structure includes a substrate with a plurality of dielectric layers sequentially formed thereon, a trench formed in the dielectric layers, wherein the trench is composed of at least two interconnected dual damascene recesses, each dual damascene recess formed in one dielectric layer; and a capacitor multilayer disposed on the sidewall of the trench.Type: GrantFiled: January 27, 2014Date of Patent: March 1, 2016Assignee: UNITED MICROELECTRONICS CORP.Inventors: Duan Quan Liao, Yikun Chen, Ching Hwa Tey, Xiao Zhong Zhu
-
Publication number: 20150348789Abstract: A semiconductor process includes the following steps. A first gate is formed on a substrate, wherein the first gate includes a stacked gate on the substrate and a cap on the stacked gate. A spacer material is formed to conformally cover the first gate and the substrate. The spacer material is etched to form a spacer on a side of the first gate and a block on the other side of the first gate corresponding to the side. A material covers the substrate, the block, the first gate and the spacer, wherein the top surface of the material is a flat surface. The block, the spacer and the material are pulled down with the same pulling selectivity so that an assisting gate is formed from the block and a selective gate is formed from the spacer.Type: ApplicationFiled: May 28, 2014Publication date: December 3, 2015Applicant: UNITED MICROELECTRONICS CORP.Inventors: Duan Quan Liao, Wei Cheng, Yikun Chen, CHING HWA TEY, Xiao Zhong Zhu
-
Publication number: 20150214293Abstract: A capacitor structure includes a substrate with a plurality of dielectric layers sequentially formed thereon, a trench formed in the dielectric layers, wherein the trench is composed of at least two interconnected dual damascene recesses, each dual damascene recess formed in one dielectric layer; and a capacitor multilayer disposed on the sidewall of the trench.Type: ApplicationFiled: January 27, 2014Publication date: July 30, 2015Applicant: UNITED MICROELECTRONICS CORP.Inventors: Duan Quan Liao, Yikun Chen, CHING HWA TEY, Xiao Zhong Zhu
-
Publication number: 20140252482Abstract: A FINFET transistor structure includes a substrate including a fin structure. Two combined recesses embedded within the substrate, wherein each of the combined recesses includes a first recess extending in a vertical direction and a second recess extending in a lateral direction, the second recess has a protruding side extending to and under the fin structure. Two filling layers respectively fill in the combined recesses. A gate structure crosses the fin structure.Type: ApplicationFiled: May 27, 2014Publication date: September 11, 2014Applicant: UNITED MICROELECTRONICS CORP.Inventors: Rai-Min Huang, Sheng-Huei Dai, Chen-Hua Tsai, Duan Quan Liao, Yikun Chen, Xiao Zhong Zhu
-
Patent number: 8828878Abstract: A manufacturing method for a dual damascene structure first includes providing a substrate having at least a dielectric layer, a first hard mask layer, a first cap layer, a second hard mask layer, and a second cap layer sequentially formed thereon, performing a first double patterning process to form a plurality of first trench openings and second trench openings in the second cap layer and the second hard mask, and the first layer being exposed in bottoms of the first trench openings and the second trench openings, performing a second double patterning process to form a plurality of first via openings and second via openings in the first cap layer and the first hard mask layer, and transferring the first trench openings, the second trench openings, the first via openings, and the second via openings to the dielectric layer to form a plurality of dual damascene openings.Type: GrantFiled: August 26, 2011Date of Patent: September 9, 2014Assignee: United Microelectronics Corp.Inventors: Duan Quan Liao, Yikun Chen, Xiao Zhong Zhu, Ching-Hwa Tey, Chen-Hua Tsai, Yu-Tsung Lai
-
Publication number: 20140225197Abstract: A FINFET transistor structure includes a substrate, a fin structure, an insulating layer and a gate structure. The fin structure is disposed on the substrate and directly connected to the substrate. Besides, the fin structure includes a fin conductive layer and a bottle neck. The insulating layer covers the substrate and has a protruding side which is formed by partially surrounding the bottle neck of the fin structure, and a bottom side in direct contact with the substrate so that the protruding side extend to and under the fin structure. The gate structure partially surrounds the fin structure.Type: ApplicationFiled: April 25, 2014Publication date: August 14, 2014Applicant: UNITED MICROELECTRONICS CORP.Inventors: Rai-Min Huang, Sheng-Huei Dai, Chen-Hua Tsai, Duan Quan Liao, Yikun Chen, Xiao Zhong Zhu
-
Patent number: 8772860Abstract: A FINFET transistor structure includes a substrate, a fin structure, an insulating layer and a gate structure. The fin structure is disposed on the substrate and directly connected to the substrate. Besides, the fin structure includes a fin conductive layer and a bottle neck. The insulating layer covers the substrate and has a protruding side which is formed by partially surrounding the bottle neck of the fin structure, and a bottom side in direct contact with the substrate so that the protruding side extend to and under the fin structure. The gate structure partially surrounds the fin structure.Type: GrantFiled: May 26, 2011Date of Patent: July 8, 2014Assignee: United Microelectronics Corp.Inventors: Rai-Min Huang, Sheng-Huei Dai, Chen-Hua Tsai, Duan Quan Liao, Yikun Chen, Xiao Zhong Zhu
-
Patent number: 8507338Abstract: A fabricating method of semiconductor structure is provided. First, a substrate with a dielectric layer formed thereon is provided. The dielectric layer has a first opening and a second opening exposing a portion of the substrate. Further, a gate dielectric layer including a high-k dielectric layer and a barrier layer stacked thereon had been formed on the bottoms of the first opening and the second opening. Next, a sacrificial layer is formed on the portion of the gate dielectric layer within the second opening. Next, a first work function metal layer is formed to cover the portion of the gate dielectric layer within the first opening and the sacrificial layer. Then, the portion of the first work function metal layer and the sacrificial layer within the second opening are removed.Type: GrantFiled: August 8, 2011Date of Patent: August 13, 2013Assignee: United Microelectronics Corp.Inventors: Duan-Quan Liao, Yi-Kun Chen, Xiao-Zhong Zhu
-
Publication number: 20130181264Abstract: A semiconductor structure includes at least a fin-shaped structure, a gate, a source/drain region, an interdielectric layer and an epitaxial structure. At least a fin-shaped structure is located on a bottom substrate. The gate covers the fin-shaped structure. The source/drain region is located in the fin-shaped structure next to the gate. The interdielectric layer covers the gate and the fin-shaped structure, wherein the interdielectric layer has a plurality of contact holes, respectively exposing at least a part of the source/drain region. The epitaxial structure is located in each of the contact holes, directly contacts and is only located on the source/drain region. Additionally, a semiconductor process formed said semiconductor structure is also provided.Type: ApplicationFiled: January 17, 2012Publication date: July 18, 2013Inventors: Duan Quan Liao, Yikun Chen, Ching-Hwa Tey, Xiao Zhong Zhu
-
Publication number: 20130037889Abstract: A fabricating method of semiconductor structure is provided. First, a substrate with a dielectric layer formed thereon is provided. The dielectric layer has a first opening and a second opening exposing a portion of the substrate. Further, a gate dielectric layer including a high-k dielectric layer and a barrier layer stacked thereon had been formed on the bottoms of the first opening and the second opening. Next, a sacrificial layer is formed on the portion of the gate dielectric layer within the second opening. Next, a first work function metal layer is formed to cover the portion of the gate dielectric layer within the first opening and the sacrificial layer. Then, the portion of the first work function metal layer and the sacrificial layer within the second opening are removed.Type: ApplicationFiled: August 8, 2011Publication date: February 14, 2013Applicant: UNITED MICROELECTRONICS CORP.Inventors: Duan-Quan LIAO, Yi-Kun Chen, Xiao-Zhong Zhu
-
Publication number: 20120309199Abstract: A manufacturing method for a dual damascene structure first includes providing a substrate having at least a dielectric layer, a first hard mask layer, a first cap layer, a second hard mask layer, and a second cap layer sequentially formed thereon, performing a first double patterning process to form a plurality of first trench openings and second trench openings in the second cap layer and the second hard mask, and the first layer being exposed in bottoms of the first trench openings and the second trench openings, performing a second double patterning process to form a plurality of first via openings and second via openings in the first cap layer and the first hard mask layer, and transferring the first trench openings, the second trench openings, the first via openings, and the second via openings to the dielectric layer to form a plurality of dual damascene openings.Type: ApplicationFiled: August 26, 2011Publication date: December 6, 2012Inventors: Duan Quan Liao, Yikun Chen, Xiao Zhong Zhu, Ching-Hwa Tey, Chen-Hua Tsai, Yu-Tsung Lai
-
Publication number: 20120299099Abstract: A FINFET transistor structure includes a substrate, a fin structure, an insulating layer and a gate structure. The fin structure is disposed on the substrate and directly connected to the substrate. Besides, the fin structure includes a fin conductive layer and a bottle neck. The insulating layer covers the substrate and has a protruding side which is formed by partially surrounding the bottle neck of the fin structure, and a bottom side in direct contact with the substrate so that the protruding side extend to and under the fin structure. The gate structure partially surrounds the fin structure.Type: ApplicationFiled: May 26, 2011Publication date: November 29, 2012Inventors: Rai-Min Huang, Sheng-Huei Dai, Chen-Hua Tsai, Duan Quan Liao, Yikun Chen, Xiao Zhong Zhu