Patents by Inventor Xiaohong Zhou

Xiaohong Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10795479
    Abstract: A touch conductive film comprises a substrate and an electrically-conductive grid formed on the substrate. Cells of the electrically-conductive grid in a visible region and a non-visible region of the substrate are integrally formed with one another. Also provided are a touch module employing the touch conductive film and a display device. The touch conductive film of the invention has a simple structure, can be manufactured conveniently, and has lower costs. Moreover, the invention has better stability, thereby correspondingly reducing manufacturing costs and assembly costs.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: October 6, 2020
    Assignees: IVTOUCH CO., LTD, SVG TECH GROUP CO., LTD, Soochow Univeristy
    Inventor: Xiaohong Zhou
  • Patent number: 10595813
    Abstract: A medical device system and associated method discriminate respiratory and cardiac conditions using respiratory sounds. A sensing module acquires a first signal and a second signal, at least the second signal acquired from an acoustic transducer. A processor is configured to receive the first signal and to control the sensing module to acquire the second acoustic signal in response to a change in the first signal. The processor discriminates between a cardiac condition and a respiratory condition as a cause of the change in the first signal in response to the second acoustic signal.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 24, 2020
    Assignee: Medtronic, Inc.
    Inventors: Zhendong Song, Xiaohong Zhou
  • Publication number: 20200069245
    Abstract: In some examples, processing circuitry of a medical device system determines, for each of a plurality of patient parameters, a difference metric for a current period based on a value of a patient parameter determined for the current period and a value of the patient parameter determined for an immediately preceding period, and determines a score for the current period based on a sum of the difference metrics for at least some of the plurality of patient parameters. The processing circuitry determines a threshold for the current period based on scores determined for N periods that precede the current period, compares the score for the current period to the threshold, and determines whether to generate an alert indicating that an acute cardiac event of the patient, e.g., ventricular tachyarrhythmia, is predicted, and/or deliver a therapy configured to prevent the acute cardiac event, based on the comparison.
    Type: Application
    Filed: November 4, 2019
    Publication date: March 5, 2020
    Inventor: Xiaohong ZHOU
  • Patent number: 10463295
    Abstract: In some examples, processing circuitry of a medical device system determines, for each of a plurality of patient parameters, a difference metric for a current period based on a value of a patient parameter determined for the current period and a value of the patient parameter determined for an immediately preceding period, and determines a score for the current period based on a sum of the difference metrics for at least some of the plurality of patient parameters. The processing circuitry determines a threshold for the current period based on scores determined for N periods that precede the current period, compares the score for the current period to the threshold, and determines whether to generate an alert indicating that an acute cardiac event of the patient, e.g., ventricular tachyarrhythmia, is predicted, and/or deliver a therapy configured to prevent the acute cardiac event, based on the comparison.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: November 5, 2019
    Assignee: Medtronic, Inc.
    Inventor: Xiaohong Zhou
  • Publication number: 20190220125
    Abstract: A touch conductive film comprises a substrate and an electrically-conductive grid formed on the substrate. Cells of the electrically-conductive grid in a visible region and a non-visible region of the substrate are integrally formed with one another. Also provided are a touch module employing the touch conductive film and a display device. The touch conductive film of the invention has a simple structure, can be manufactured conveniently, and has lower costs. Moreover, the invention has better stability, thereby correspondingly reducing manufacturing costs and assembly costs.
    Type: Application
    Filed: May 17, 2017
    Publication date: July 18, 2019
    Inventor: Xiaohong Zhou
  • Publication number: 20190175914
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Application
    Filed: February 18, 2019
    Publication date: June 13, 2019
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N.M. Cornelussen
  • Publication number: 20190111265
    Abstract: The present disclosure relates generally to pacing of cardiac tissue, and more particularly to adjusting delivery of His bundle or bundle branch pacing in a cardiac pacing system to achieve synchronized ventricular activation. A leadless pacing device (LPD) may include a plurality of electrodes comprising a bundle pacing electrode leadlessly connected to the housing, which may be implanted proximate to or in the His bundle or bundle branch of the patient's heart. An electrical pulse generator may generate and deliver electrical His-bundle or bundle-branch stimulation pulses using the bundle pacing electrode based on sensing one or both of an atrial event and a ventricular event. The LPD may receive communication from another implantable device, such as a subcutaneously implanted device, and deliver His-bundle or bundle-branch pacing in response to the communication.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 18, 2019
    Inventor: Xiaohong Zhou
  • Publication number: 20190111264
    Abstract: The present disclosure relates generally to pacing of cardiac tissue, and more particularly to adjusting delivery of His bundle or bundle branch pacing in a cardiac pacing system to achieve synchronized ventricular activation. A left bundle branch (LBB) cathode electrode may be implanted a left side of the septum of the patient's heart proximate to the LBB, and a right bundle branch (RBB) cathode electrode may be implanted on a right side of the septum of the patient's heart proximate to the RBB. One or both cathode electrodes may be used to deliver synchronized left and right bundle-branch pacing based on one or both of an atrial event and a ventricular event. A device for bundle branch pacing may be implanted based on determining whether an LBB block pattern or an RBB block pattern is present in monitored electrical activity.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 18, 2019
    Inventor: Xiaohong Zhou
  • Publication number: 20190111270
    Abstract: The present disclosure relates generally to pacing of cardiac tissue, and more particularly to adjusting delivery of His bundle or bundle branch pacing in a cardiac pacing system to achieve synchronized ventricular activation. Bundle pacing may be delivered in response to determining whether the QRS parameter or activation interval is greater than a threshold. A set of AV delays may be generated, and an optimal AV delay may be selected from the stored set of AV delays. His-bundle or bundle-branch pacing may be selectively delivered based on RV or LV activation time. Pacing may also be adjusted based on dyssynchrony detected or the type of bundle branch block pattern detected.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 18, 2019
    Inventor: Xiaohong Zhou
  • Patent number: 10207112
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: February 19, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Xiaohong Zhou, Lilian Kornet, Richard N. M. Cornelussen, Robert W. Stadler
  • Patent number: 10130267
    Abstract: A medical device system and method that includes sensing a heart sound signal from a first external sensor, determining whether a pulmonary hypertension signature is detected in response to the sensed heart sound signal, sensing a lung sound signal from a second external sensor, determining whether a heart failure signature is detected in response to the sensed lung sound signal, and determining therapy parameters in response to determining whether a pulmonary hypertension signature is detected and determining whether a heart failure signature is detected.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: November 20, 2018
    Assignee: Medtronic, Inc.
    Inventors: Zhendong Song, Xiaohong Zhou
  • Publication number: 20170354365
    Abstract: In some examples, processing circuitry of a medical device system determines, for each of a plurality of patient parameters, a difference metric for a current period based on a value of a patient parameter determined for the current period and a value of the patient parameter determined for an immediately preceding period, and determines a score for the current period based on a sum of the difference metrics for at least some of the plurality of patient parameters. The processing circuitry determines a threshold for the current period based on scores determined for N periods that precede the current period, compares the score for the current period to the threshold, and determines whether to generate an alert indicating that an acute cardiac event of the patient, e.g., ventricular tachyarrhythmia, is predicted, and/or deliver a therapy configured to prevent the acute cardiac event, based on the comparison.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 14, 2017
    Inventor: Xiaohong Zhou
  • Patent number: 9814886
    Abstract: In some examples, an electromechanical disassociation state (EMD) of a heart of a patient can be treated by delivering electrical stimulation to a tissue site to at least one of modulate afferent nerve activity or inhibit efferent nerve activity upon determining that the heart is in an electromechanical dissociation state, where the tissue site comprises at least one of a nonmyocardial tissue site or a nonvascular cardiac tissue site. The delivery of electrical stimulation may effectively treat the EMD state of the heart, e.g., by enabling effective mechanical contraction of the heart. In another example, an electromechanical disassociation state of a heart of a patient can be treated by determining autonomic nervous system activity associated with a detected EMD state of the heart of a patient, and delivering electrical stimulation therapy to the patient based on the determined autonomic nervous system activity of the patient associated with the EMD state.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: November 14, 2017
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Paul G. Krause, William T. Donofrio
  • Patent number: 9775987
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: October 3, 2017
    Assignee: Medtronic, Inc.
    Inventors: William T. Donofrio, John E. Burnes, Paul G. Krause, Gerald P. Arne, David J. Peichel, Xiaohong Zhou, James D. Reinke, Timothy Davis
  • Publication number: 20170216601
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Application
    Filed: April 6, 2017
    Publication date: August 3, 2017
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N.M. Cornelussen
  • Patent number: 9681809
    Abstract: An implantable medical device for optically sensing action potential signals in excitable body tissue. The device includes an elongated tubular lead body carrying an optical fiber extending from a proximal lead end to a distal lead end to position the optical fiber at a target site. The lead body additionally carries a conduit for dispensing a voltage-sensitive fluorescent dye into tissue surrounding the target site. The optical fiber transmits excitation light to the fluorescent dye to cause the dye to fluoresce with varying intensity as the transmembrane potentials of local tissue cells vary due to passing depolarization wavefronts. The optical fiber transmits the fluorescence signal to the device to generate an action potential signal or fiducial points of an action potential signal for use in accurately measuring and characterizing electrical activity of excitable tissue.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: June 20, 2017
    Assignee: Medtronic, Inc.
    Inventors: Vinod Sharma, Xiaohong Zhou
  • Patent number: 9675315
    Abstract: An implantable medical device that includes an elongated lead body having an outer surface and a first opening along the outer surface, a first sensor positioned along the lead body and configured to receive first acoustic signals through the first opening of the lead body and generate an electrical signal representative of sounds produced at a first targeted location along a patient's cardiovascular system, and a processor configured to determine an intensity of the first acoustic signals, and determine changes in blood pressure in response to the determined intensity.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 13, 2017
    Assignee: Medtronic, Inc.
    Inventors: Zhendong Song, Xiaohong Zhou
  • Patent number: 9656079
    Abstract: A method and apparatus are used to provide therapy to a patient experiencing ventricular dysfunction or heart failure. At least one electrode is located in a region associated with nervous tissue, such as nerve bundles T1-T4, in a patient's body. Electrical stimulation is applied to the at least one electrode to improve the cardiac efficiency of the patient's heart. One or more predetermined physiologic parameters of the patient are monitored, and the electrical stimulation is adjusted based on the one or more predetermined physiologic parameters.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: May 23, 2017
    Assignee: Medtronic, Inc.
    Inventors: Michael R. S. Hill, Gary W. King, Thomas J. Mullen, Xiaohong Zhou
  • Patent number: 9597505
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: March 21, 2017
    Assignee: Medtronic, Inc.
    Inventors: William T. Donofrio, John E. Burnes, Paul G. Krause, Xiaohong Zhou, Gerald P. Arne, David J. Peichel, James D. Reinke
  • Publication number: 20170054043
    Abstract: Provided are a solar cell superfine electrode transfer thin film, manufacturing method and application method thereof. The electrode transfer thin film sequentially includes from bottom to top a substrate, a release layer, a resin layer and a hot melt adhesive layer; the resin layer is formed with electrode trenches therein; the electrode trenches are formed with electrodes therein; superfine conductive electrodes are continuously prepared on a transparent thin film via a roll-to-roll nanoimprinting method, the width of an electrode wire being 2 ?m-50 ?m, and the width of a typical line being 10 ?m-30 ?m. Directly attach the superfine electrodes of the hot melt adhesive layer to a solar cell by peeling off the substrate material, and sintering at a high temperature to volatilize the hot melt adhesive layer material while retaining the electrodes, thus the electrodes are integrally transferred, without poor local transfer.
    Type: Application
    Filed: March 30, 2015
    Publication date: February 23, 2017
    Inventors: Xiaohong Zhou, Zongbao Fang, Linsen Chen, Pengfei Zhu, Donglin Pu, Ximei Yin, Yunlong Zhao