Patents by Inventor Xiaohong Zhou

Xiaohong Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140324115
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Paul D. Ziegler, Lillian Kornet, Xiaohong Zhou, Richard N.M. Comelussen, Robert Stadler, Eduardo Warman, Karen J. Kleckner, Alberto Della Scala
  • Publication number: 20140316486
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 23, 2014
    Applicant: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Lilian Kornet, Richard N.M. Cornelussen, Paul D. Ziegler, Robert Stadler, Eduardo Warman, Karen J. Kleckner, Lucy Nichols, Alberto Della Scala
  • Patent number: 8868182
    Abstract: A medical device and associated method establish an occurrence of a premature atrial contraction. The device senses a ventricular signal. A control unit is configured to determine a metric of the ventricular signal during an interval following the premature atrial contraction and detect a change in cardiac stress tolerance in response to the determined metric.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: October 21, 2014
    Assignee: Medtronic, Inc.
    Inventors: Zhendong Song, Xiaohong Zhou
  • Patent number: 8781583
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: July 15, 2014
    Assignee: Medtronic, Inc.
    Inventors: Richard N. M. Cornelussen, Xiaohong Zhou, Robert Stadler, Lilian Kornet
  • Patent number: 8781582
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: July 15, 2014
    Assignee: Medtronic, Inc.
    Inventors: Paul D. Ziegler, Lilian Kornet, Xiaohong Zhou, Richard N. M. Cornelussen, Robert Stadler, Eduardo Warman, Karen J. Kleckner, Alberto Della Scala
  • Patent number: 8774918
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 8, 2014
    Assignee: Medtronic, Inc.
    Inventors: William T. Donofrio, John E. Burnes, Paul G. Krause, Xiaohong Zhou, Gerald P. Arne, David J. Peichel, James D. Reinke
  • Patent number: 8764674
    Abstract: A medical device system and method that includes receiving an A2 heart sound signal from a first external acoustic sensor, receiving a P2 heart sound signal from a second external acoustic sensor, determining at least one A2 heart sound signal parameter from the A2 heart sound signal, determining at least one P2 heart sound signal parameter from the P2 heart sound signal, and based on the at least one P2 heart sound signal parameter, estimating pulmonary arterial pressure.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: July 1, 2014
    Assignee: Medtronic, Inc.
    Inventors: Zhendong Song, Xiaohong Zhou
  • Publication number: 20140142650
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Medtronic, Inc.
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N.M. Cornelussen
  • Patent number: 8725259
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: May 13, 2014
    Assignee: Medtronic, Inc.
    Inventors: Lilian Kornet, Richard N. M. Cornelussen, Paul D. Ziegler, Xiaohong Zhou, Eduardo Warman, Karen J. Kleckner, Lucy Nichols, Alberto Della Scala
  • Patent number: 8718763
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: May 6, 2014
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Robert Stadler, Richard N. M. Cornelussen, Lilian Kornet, Paul D. Ziegler, Karen J. Kleckner, Alberto Della Scala
  • Publication number: 20140114163
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 24, 2014
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N.M. Cornelussen
  • Patent number: 8703200
    Abstract: The present invention provides methods for reducing, reversing or inhibiting neovascularization in a tissue of a mammalian subject having a pathological condition involving neovascularization by administration in vivo of nanoceria particles (cerium oxide nanoparticles) to the subject. The method of the invention is useful, for example, for reducing, treating, reversing or inhibiting neovascularization in ocular tissue such as the retina, macula or cornea; in skin; in synovial tissue; in intestinal tissue; or in bone. In addition, the method of the invention is useful for reducing or inhibiting neovascularization in a neoplasm (tumors), which can be benign or malignant and, where malignant, can be a metastatic neoplasm. As such, the invention provides compositions, which contain nanoceria particles and are useful for reducing, treating, reversing or inhibiting angiogenesis in a mammalian subject.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: April 22, 2014
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: James F. McGinnis, Xiaohong Zhou, Lily L. Wong, Sudipta Seal
  • Patent number: 8706223
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: April 22, 2014
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Lilian Kornet, Richard N. M. Cornelussen, Paul D. Ziegler, Robert Stadler, Eduardo Warman, Karen J. Kleckner, Lucy Nichols, Alberto Della Scala
  • Patent number: 8688210
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: April 1, 2014
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Paul G. Krause, William T. Donofrio, Gerald P. Arne, David J. Peichel, Xiaohong Zhou, James D. Reinke
  • Patent number: 8639327
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N. M. Cornelussen
  • Patent number: 8634903
    Abstract: An implantable medical device (IMD), such as an implantable pacemaker, cardioverter, or diagnostic device, generates an EGM signal, e.g., a far field EGM signal, samples the EGM signal to obtain a single T-wave amplitude value for each T-wave over a plurality of beats, and stores the T-wave amplitude values in memory. The IMD creates a time series of the T-wave amplitude values stored in memory, calculates the power spectral density for the times series, and selects a power spectral density of a particular frequency, e.g., 0.5 cycles per beat, as the TWA value. The IMD may periodically determine TWA values for the patient and store the values in memory. The TWA values may be presented to medical personnel, e.g., as a trend. The IMD may deliver or modify therapy, or provide an alert, based on the TWA values.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 21, 2014
    Assignee: Medtronic, Inc.
    Inventors: Vinod Sharma, Xiaohong Zhou
  • Publication number: 20140018688
    Abstract: A medical device and associated method establish an occurrence of a premature atrial contraction. The device senses a ventricular signal. A control unit is configured to determine a metric of the ventricular signal during an interval following the premature atrial contraction and detect a change in cardiac stress tolerance in response to the determined metric.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Inventors: Zhendong Song, Xiaohong Zhou
  • Patent number: 8620425
    Abstract: Methods of nerve signal differentiation, methods of delivering therapy using such nerve signal differentiation, and to systems and devices for performing such methods. Nerve signal differentiation may include locating two electrodes proximate nerve tissue and differentiating between efferent and afferent components of nerve signals monitored using the two electrodes.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 31, 2013
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, John Edward Burnes, Lilian Kornet, Richard N. M. Cornelussen
  • Patent number: 8620414
    Abstract: An implantable medical device and associated method for classifying a patient's risk for arrhythmias by sensing a cardiac electrogram (EGM) signal and selecting a first pair of T-wave signals and a second pair of T-wave signals. A first difference between the two T-wave signals of the first pair is compared to a second difference between the two T-wave signals of the second pair. A T-wave alternans phase reversal is detected in response to comparing the first difference and the second difference, and the patient's arrhythmia risk is classified in response to detecting the phase reversal.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 31, 2013
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Xiaohong Zhou
  • Patent number: 8611996
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 17, 2013
    Assignee: Medtronic, Inc.
    Inventors: William T. Donofrio, John E. Burnes, Paul G. Krause, Xiaohong Zhou, Gerald P. Arne, David J. Peichel, James D. Reinke