Patents by Inventor Xiaolin Chen

Xiaolin Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8629067
    Abstract: Methods of forming dielectric layers are described. The method may include the steps of mixing a silicon-containing precursor with a radical-nitrogen precursor, and depositing a dielectric layer on a substrate. The radical-nitrogen precursor is formed in a remote plasma by flowing hydrogen (H2) and nitrogen (N2) into the plasma in order to allow adjustment of the nitrogen/hydrogen ratio. The dielectric layer is initially a silicon-and-nitrogen-containing layer which may be converted to a silicon-and-oxygen-containing layer by curing and/or annealing the film in an oxygen-containing environment.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: January 14, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jingmei Liang, Xiaolin Chen, Matthew L. Miller, Nitin K. Ingle, Shankar Venkataraman
  • Patent number: 8563445
    Abstract: Methods, materials, and systems are described for forming conformal dielectric layers containing silicon and nitrogen (e.g., a silicon-nitrogen-hydrogen (Si—N—H) film) from a carbon-free silicon-and-nitrogen precursor and radical-nitrogen precursor. The carbon-free silicon-and-nitrogen precursor is predominantly excited by contact with the radical-nitrogen precursor. Because the silicon-and-nitrogen film is formed without carbon, the conversion of the film into hardened silicon oxide is done with less pore formation and less volume shrinkage. The deposited silicon-and-nitrogen-containing film may be wholly or partially converted to silicon oxide which allows the optical properties of the conformal dielectric layer to be selectable. The deposition of a thin silicon-and-nitrogen-containing film may be performed at low temperature to form a liner layer in a substrate trench.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: October 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jingmei Liang, Xiaolin Chen, DongQing Li, Nitin K. Ingle
  • Publication number: 20130271822
    Abstract: In some example embodiments, a demodulator may include an input polarization beam splitter (IPBS), input half waveplate (IHWP), cubical polarization beam splitter (CPBS), first reflector (R1), second reflector (R2), first quarter waveplate (QWP1), second quarter waveplate (QWP2), beam displacer (BD), output half waveplate (OHWP), and output polarization beam splitter (OPBS). The CPBS may be positioned to receive an output from IPBS. The IHWP may be positioned between IPBS and CPBS. The R1 may be positioned to receive and return a first output from CPBS. The QWP1 may be positioned between CPBS and R1. The R2 may be positioned to receive and return a second output from CPBS. The QWP2 may be positioned between CPBS and R2. The BD may be positioned to receive a third output from CPBS. The OPBS may be positioned to receive an output from BD. The OHWP may be positioned between BD and OPBS.
    Type: Application
    Filed: September 19, 2012
    Publication date: October 17, 2013
    Applicant: FINISAR CORPORATION
    Inventors: Huiping LI, Fan CHEN, Xiaolin CHEN, Fahua LAN
  • Publication number: 20130149462
    Abstract: A method of forming a dielectric layer is described. The method first deposits a silicon-nitrogen-and-hydrogen-containing (polysilazane) layer by radical-component chemical vapor deposition (CVD). The silicon-nitrogen-and-hydrogen-containing layer is formed by combining a radical precursor (excited in a remote plasma) with an unexcited carbon-free silicon precursor. A silicon oxide capping layer may be formed from a portion of the carbon-free silicon-nitrogen-and-hydrogen-containing layer to avoid time-evolution of underlying layer properties prior to conversion into silicon oxide. Alternatively, the silicon oxide capping layer is formed over the silicon-nitrogen-and-hydrogen-containing layer. Either method of formation involves the formation of a local plasma within the substrate processing region.
    Type: Application
    Filed: June 12, 2012
    Publication date: June 13, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Jingmei Liang, Xiaolin Chen, Nitin K. Ingle, Shankar Venkataraman
  • Patent number: 8450191
    Abstract: Methods of forming polysilicon layers are described. The methods include forming a high-density plasma from a silicon precursor in a substrate processing region containing the deposition substrate. The described methods produce polycrystalline films at reduced substrate temperature (e.g. <500° C.) relative to prior art techniques. The availability of a bias plasma power adjustment further enables adjustment of conformality of the formed polysilicon layer. When dopants are included in the high density plasma, they may be incorporated into the polysilicon layer in such a way that they do not require a separate activation step.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 28, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xiaolin Chen, Young S. Lee
  • Patent number: 8433204
    Abstract: A phase shift keyed demodulator includes first and second beam splitters, a first optical path, a second optical path, and a wavelength tuner. The first beam splitter splits an input signal into first and second output signals. The second beam splitter splits each first and second output signal into a transmitted signal and a reflected signal. The first optical path includes an optical path of each transmitted signal from a beam splitting surface to a reflector and back to the beam splitting surface. The second optical path includes an optical path of each reflected signal from the beam splitting surface to a mirror surface and back to the beam splitting surface. A path difference introduces a delay between the transmitted signal and the reflected signal. The wavelength tuner tunes the demodulator to a predetermined central wavelength and introduces a phase shift between first and second transmitted signals.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: April 30, 2013
    Assignee: Finisar Corporation
    Inventors: Huiping Li, Xiaolin Chen, Fan Chen, Fahua Lan, Dapeng Kevin Zhang
  • Publication number: 20120238108
    Abstract: A method of forming a silicon oxide layer is described. The method increases the oxygen content of a dielectric layer by curing the layer in a two-step ozone cure. The first step involves exposing the dielectric layer to ozone while the second step involves exposing the dielectric layer to ozone excited by a local plasma. This sequence can reduce or eliminate the need for a subsequent anneal following the cure step. The two-step ozone cures may be applied to silicon-and-nitrogen-containing film to convert the films to silicon oxide.
    Type: Application
    Filed: September 7, 2011
    Publication date: September 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Jingmei Liang, Nitin K. Ingle, Shankar Venkataraman
  • Publication number: 20120190178
    Abstract: Methods of forming polysilicon layers are described. The methods include forming a high-density plasma from a silicon precursor in a substrate processing region containing the deposition substrate. The described methods produce polycrystalline films at reduced substrate temperature (e.g. <500° C.) relative to prior art techniques. The availability of a bias plasma power adjustment further enables adjustment of conformality of the formed polysilicon layer. When dopants are included in the high density plasma, they may be incorporated into the polysilicon layer in such a way that they do not require a separate activation step.
    Type: Application
    Filed: April 19, 2011
    Publication date: July 26, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xiaolin Chen, Young S. Lee
  • Publication number: 20120177846
    Abstract: Methods of forming silicon oxide layers are described. The methods include concurrently combining plasma-excited (radical) steam with an unexcited silicon precursor. Nitrogen may be supplied through the plasma-excited route (e.g. by adding ammonia to the steam) and/or by choosing a nitrogen-containing unexcited silicon precursor. The methods result in depositing a silicon-oxygen-and-nitrogen-containing layer on a substrate. The oxygen content of the silicon-oxygen-and-nitrogen-containing layer is then increased to form a silicon oxide layer which may contain little or no nitrogen. The increase in oxygen content may be brought about by annealing the layer in the presence of an oxygen-containing atmosphere and the density of the film may be increased further by raising the temperature even higher in an inert environment.
    Type: Application
    Filed: September 19, 2011
    Publication date: July 12, 2012
    Applicant: Applied Materials, Inc.
    Inventors: DongQing Li, Jingmei Liang, Xiaolin Chen, Nitin K. Ingle
  • Publication number: 20110217851
    Abstract: Methods, materials, and systems are described for forming conformal dielectric layers containing silicon and nitrogen (e.g., a silicon-nitrogen-hydrogen (Si—N—H) film) from a carbon-free silicon-and-nitrogen precursor and radical-nitrogen precursor. The carbon-free silicon-and-nitrogen precursor is predominantly excited by contact with the radical-nitrogen precursor. Because the silicon-and-nitrogen film is formed without carbon, the conversion of the film into hardened silicon oxide is done with less pore formation and less volume shrinkage. The deposited silicon-and-nitrogen-containing film may be wholly or partially converted to silicon oxide which allows the optical properties of the conformal dielectric layer to be selectable. The deposition of a thin silicon-and-nitrogen-containing film may be performed at low temperature to form a liner layer in a substrate trench.
    Type: Application
    Filed: February 10, 2011
    Publication date: September 8, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Jingmei Liang, Xiaolin Chen, DongQing Li, Nitin K. Ingle
  • Publication number: 20110188867
    Abstract: A phase shift keyed demodulator includes first and second beam splitters, a first optical path, a second optical path, and a wavelength tuner. The first beam splitter splits an input signal into first and second output signals. The second beam splitter splits each first and second output signal into a transmitted signal and a reflected signal. The first optical path includes an optical path of each transmitted signal from a beam splitting surface to a reflector and back to the beam splitting surface. The second optical path includes an optical path of each reflected signal from the beam splitting surface to a mirror surface and back to the beam splitting surface. A path difference introduces a delay between the transmitted signal and the reflected signal. The wavelength tuner tunes the demodulator to a predetermined central wavelength and introduces a phase shift between first and second transmitted signals.
    Type: Application
    Filed: December 23, 2010
    Publication date: August 4, 2011
    Applicant: FINISAR CORPORATION
    Inventors: Huiping Li, Xiaolin Chen, Fan Chen, Fahua Lan, Kevin Dapend Zhang
  • Publication number: 20110159703
    Abstract: Methods of forming dielectric layers are described. The method may include the steps of mixing a silicon-containing precursor with a radical-nitrogen precursor, and depositing a dielectric layer on a substrate. The radical-nitrogen precursor is formed in a remote plasma by flowing hydrogen (H2) and nitrogen (N2) into the plasma in order to allow adjustment of the nitrogen/hydrogen ratio. The dielectric layer is initially a silicon-and-nitrogen-containing layer which may be converted to a silicon-and-oxygen-containing layer by curing and/or annealing the film in an oxygen-containing environment.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 30, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Jingmei Liang, Xiaolin Chen, Matthew L. Miller, Nitin K. Ingle, Shankar Venkataraman
  • Patent number: 7902080
    Abstract: Methods of filling a gap on a substrate with silicon oxide are described. The methods may include the steps of introducing an organo-silicon precursor and an oxygen precursor to a deposition chamber, reacting the precursors to form a first silicon oxide layer in the gap on the substrate, and etching the first silicon oxide layer to reduce the carbon content in the layer. The methods may also include forming a second silicon oxide layer on the first layer, and etching the second layer to reduce the carbon content in the second layer. The silicon oxide layers are annealed after the gap is filled.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: March 8, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, Shankar Venkataraman
  • Patent number: 7799698
    Abstract: A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xiaolin Chen, DongQing Li, Thanh N. Pham, Farhad K. Moghadam, Zhuang Li, Padmanabhan Krishnaraj
  • Publication number: 20100168407
    Abstract: The invention relates to a novel kind of chitosan derivative, specifically to quaternized carboxymethyl chitosand derivatives and preparation method. Chitosan with different molecular weight reacts with chloroactic acid give rise to carboxymethyl chitosan. After reaction of Schiff based, deoxidized and quaternized, quaternized carboxymethyl chitosan is obtained. This kind of chitosan derivative have better water-solubility and better antifungal activity, which can used in the fields of medicine and agriculture.
    Type: Application
    Filed: July 24, 2006
    Publication date: July 1, 2010
    Applicant: Institute of OCeanology Chinese Academy of Sciences
    Inventors: Pengcheng Li, Zhanyong Guo, Song Liu, Ronge Xing, Huahua Yu, Pibo Wang, Xiaolin Chen, Cuiping Li
  • Patent number: 7745351
    Abstract: Methods of forming a dielectric layer where the tensile stress of the layer is increased by a plasma treatment at an elevated position are described. In one embodiment, oxide and nitride layers are deposited on a substrate and patterned to form an opening. A trench is etched into the substrate. The substrate is transferred into a chamber suitable for dielectric deposition. A dielectric layer is deposited over the substrate, filling the trench and covering mesa regions adjacent to the trench. The substrate is raised to an elevated position above the substrate support and exposed to a plasma which increases the tensile stress of the substrate. The substrate is removed from the dielectric deposition chamber, and portions of the dielectric layer are removed so that the dielectric layer is even with the topmost portion of the nitride layer. The nitride and pad oxide layers are removed to form the STI structure.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7691753
    Abstract: A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Lin Zhang, Xiaolin Chen, DongQing Li, Thanh N. Pham, Farhad K. Moghadam, Zhuang Li, Padmanabhan Krishnaraj
  • Publication number: 20090103867
    Abstract: A compact variable optical attenuator having optical-tap functionality is described comprising a planar waveguide attenuator, a lens, and a photodetector. Input and output waveguides are located close to the optical axis of the lens, which reduces optical aberrations and insertion loss. The waveguide attenuator works by light absorption with virtually no scattered light present, which improves fidelity of measurements of the tapped optical power by the photodetector. The entire tap-attenuator assembly is packaged into a small form pluggable (SFP) package having two optical connectors.
    Type: Application
    Filed: October 6, 2008
    Publication date: April 23, 2009
    Applicant: JDS Uniphase Corporation
    Inventors: Qing Huang, Chang Xiao, Xiaolin Chen, Yatao Yang
  • Publication number: 20090035918
    Abstract: Methods of forming a dielectric layer where the tensile stress of the layer is increased by a plasma treatment at an elevated position are described. In one embodiment, oxide and nitride layers are deposited on a substrate and patterned to form an opening. A trench is etched into the substrate. The substrate is transferred into a chamber suitable for dielectric deposition. A dielectric layer is deposited over the substrate, filling the trench and covering mesa regions adjacent to the trench. The substrate is raised to an elevated position above the substrate support and exposed to a plasma which increases the tensile stress of the substrate. The substrate is removed from the dielectric deposition chamber, and portions of the dielectric layer are removed so that the dielectric layer is even with the topmost portion of the nitride layer. The nitride and pad oxide layers are removed to form the STI structure.
    Type: Application
    Filed: October 15, 2008
    Publication date: February 5, 2009
    Applicant: Applies Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7465680
    Abstract: A plasma treatment process for increasing the tensile stress of a silicon wafer is described. Following deposition of a dielectric layer on a substrate, the substrate is lifted to an elevated position above the substrate receiving surface and exposed to a plasma treatment process which treats both the top and bottom surface of the wafer and increases the tensile stress of the deposited layer. Another embodiment of the invention involves biasing of the substrate prior to plasma treatment to bombard the wafer with plasma ions and raise the temperature of the substrate. In another embodiment of the invention, a two-step plasma treatment process can be used where the substrate is first exposed to a plasma at a processing position directly after deposition, and then raised to an elevated position where both the top and bottom of the wafer are exposed to the plasma.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes