Patents by Inventor Xiaomin Zhang

Xiaomin Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10777800
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: September 15, 2020
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Patent number: 10720623
    Abstract: Microporous battery separators, batteries including such separators, and/or methods of making such separators, and/or methods of using such separators are provided. A battery separator for a secondary or rechargeable lithium battery may have low electrical resistance of less than 0.95 ohm-cm2, or less than 0.8 ohm-cm2. The battery separator may provide a means to achieve an improved level of battery performance in a rechargeable or secondary lithium battery based on a possibly synergistic combination of low electrical resistance, low Gurley, low tortuosity, and/or a unique trapezoid shaped pore. In accordance with at least certain multilayer embodiments the inventive microporous battery separator may have excellent onset and rate of thermal shutdown performance.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: July 21, 2020
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Lie Shi
  • Publication number: 20200176744
    Abstract: A ceramic-coated battery separator having a microporous polyolefin membrane and a ceramic coating on at least one surface of the microporous polyolefin membrane, wherein the ceramic-coated separator exhibits a strain shrinkage of 0% at temperatures greater than or equal to 120 degrees Celsius is provided.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Inventors: Zhengming Zhang, Xuefa Li, Lie Shi, Premanand Ramadass, Paul M. Halmo, Xiaomin Zhang
  • Publication number: 20200157707
    Abstract: In accordance with at least selected embodiments, the present invention is directed to novel, improved, or modified porous membranes, fibers, porous fibers, products made from such membranes, fibers or porous fibers, and/or related methods of production, use, and/or the like. In accordance with at least certain embodiments, the present invention is directed to novel, improved, or modified microporous membranes or films, fibers, microporous fibers, materials or layers made from such membranes, fibers or porous fibers, and the like for use in textile materials, garments, products, and/or textile related applications. Microporous membranes, fibers, and/or microporous fibers are made of one or more copolymers, such as block or impact copolymers, or of at least one polyolefin combined with at least one copolymer as a means of improving the hand, drape, and/or surface coefficient of friction performance properties for use in textile garments, textile materials or textile related applications.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 21, 2020
    Inventors: Kristoffer K. Stokes, Xiaomin Zhang, Karl F. Humiston
  • Publication number: 20200055863
    Abstract: The present invention relates to novel compounds that inhibit Lp-PLA2 activity, processes for their preparation, to compositions containing them and to their use in the treatment of diseases associated with the activity of Lp-PLA2, for example Alzheimer's disease.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 20, 2020
    Inventors: Zehong WAN, Xiaomin Zhang, Jian Wang, Matthew Robert Sender, Eric Steven Manas, Raphael Anthony Rivero, Joseph E. Pero, Christopher Ernst Neipp, Vipulkumar Kantibhai Patel
  • Patent number: 10559802
    Abstract: A battery separator for a secondary lithium battery includes a microporous/porous membrane with a ceramic coating of one or more layers, a layer may include one or more particles having an average particle size ranging from 0.01 ?m to 5 ?m and/or binders that include poly (sodium acrylate-acrylamide-acrylonitrile) copolymer.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 11, 2020
    Assignee: Celgard, LLC
    Inventors: Zhengming Zhang, Xuefa Li, Lie Shi, Premanand Ramadass, Paul M. Halmo, Xiaomin Zhang
  • Patent number: 10544521
    Abstract: In accordance with at least selected embodiments, the present invention is directed to novel, improved, or modified porous membranes, fibers, porous fibers, products made from such membranes, fibers or porous fibers, and/or related methods of production, use, and/or the like. In accordance with at least certain embodiments, the present invention is directed to novel, improved, or modified microporous membranes or films, fibers, microporous fibers, materials or layers made from such membranes, fibers or porous fibers, and the like for use in textile materials, garments, products, and/or textile related applications. Microporous membranes, fibers, and/or microporous fibers are made of one or more copolymers, such as block or impact copolymers, or of at least one polyolefin combined with at least one copolymer as a means of improving the hand, drape, and/or surface coefficient of friction performance properties for use in textile garments, textile materials or textile related applications.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 28, 2020
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Xiaomin Zhang, Karl F. Humiston
  • Publication number: 20200028139
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: November 10, 2017
    Publication date: January 23, 2020
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Publication number: 20200002323
    Abstract: Provided are novel compounds that inhibit LRRK2 kinase activity, processes for their preparation, compositions containing them and their use in the treatment of or prevention of diseases associated with or characterized by LRRK2 kinase activity, for example Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis (ALS).
    Type: Application
    Filed: January 23, 2018
    Publication date: January 2, 2020
    Inventors: Haifeng CUI, Feng REN, Yingxia SANG, Xiaomin ZHANG
  • Publication number: 20190334151
    Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
  • Publication number: 20190334214
    Abstract: In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: Paul M. Halmo, Xiaomin Zhang, Paul D. Vido, Zhengming Zhang, Lie Shi, Daniel R. Alexander, Jill V. Watson
  • Publication number: 20190326580
    Abstract: An improved multilayer laminated microporous battery separator for a lithium ion secondary battery, and/or a method of making or using this separator is provided. The preferred inventive dry process separator is a tri-layer laminated Polypropylene/Polyethylene/Polypropylene microporous membrane with a thickness range of 12 ?m to 30 ?m having improved puncture strength and low electrical resistance for improved cycling and charge performance in a lithium ion battery. In addition, the preferred inventive separator's or membrane's low Electrical Resistance and high porosity provides superior charge rate performance in a lithium battery for high power applications.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 24, 2019
    Inventors: Xiaomin Zhang, Lie Shi, William John Paulus
  • Patent number: 10428078
    Abstract: The present invention relates to novel compounds that inhibit Lp-PLA2 activity, processes for their preparation, to compositions containing them and to their use in the treatment of diseases associated with the activity of Lp-PLA2, for example Alzheimer's disease.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 1, 2019
    Assignee: GlaxoSmithKline Intellectual Property Development Limited
    Inventors: Zehong Wan, Xiaomin Zhang, Jian Wang, Matthew Robert Sender, Eric Steven Manas, Raphael Anthony Rivero, Joseph E Pero, Christopher Ernst Neipp, Vipulkumar Kantibhai Patel
  • Publication number: 20190275082
    Abstract: The present invention provides compositions, devices, and methods for the coordinated delivery of transplant material and immune suppressors for control of transplant rejection. In particular embodiments, immune suppression cells (e.g., regulatory T cells) and transplant material (e.g., cells, tissue, etc.) are provided within a delivery scaffold for transplant into a subject.
    Type: Application
    Filed: November 1, 2018
    Publication date: September 12, 2019
    Inventors: Xunrong Luo, Lonnie Shea, John G. Graham, Kathryn L. Pothoven, Xiaomin Zhang
  • Publication number: 20190267599
    Abstract: Described herein is a multilayer microporous film or membrane that may exhibit improved properties, including improved dielectric break down and strength, compared to prior monolayer or tri-layer microporous membranes of the same thickness. The preferred multilayer microporous membrane comprises microlayers and one or more lamination barriers. Also disclosed is a battery separator or battery comprising one or more of the multilayer microporous films or membranes. The inventive battery and battery separator is preferably safer and more robust than batteries and battery separators using prior monolayer and tri-layer microporous membranes. Also, described herein is a method for making the multilayer microporous separators, membranes or films described herein.
    Type: Application
    Filed: November 13, 2017
    Publication date: August 29, 2019
    Inventors: Kang Karen Xiao, Eric J. Penegar, Takahiko Kondo, Robert Nark, Eric R. White, Xiaomin Zhang, Kristoffer K. Stokes, Stefan Reinartz, Masaaki Okada
  • Publication number: 20190237733
    Abstract: Novel or improved microporous battery separator membranes, separators, cells, batteries including such membranes, separators, or cells, and/or methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators. In accordance with at least certain embodiments, an improved or novel battery separator for a secondary or rechargeable lithium battery may have low Electrical resistance of less than 0.95 ohm-cm2, or in some cases, less than 0.8 ohm-cm2. Furthermore, the inventive battery separator membrane may provide a means to achieve an improved level of battery performance in a rechargeable or secondary lithium battery based on a possibly synergistic combination of low Electrical resistance, low Gurley, low tortuosity, and/or a unique trapezoid shaped pore.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: Xiaomin Zhang, Lie Shi
  • Patent number: 10347951
    Abstract: In accordance with at least selected aspects, objects or embodiments, optimized, novel or improved membranes, battery separators, batteries, and/or systems and/or related methods of manufacture, use and/or optimization are provided. In accordance with at least selected embodiments, the present invention is related to novel or improved battery separators that prevent dendrite growth, prevent internal shorts due to dendrite growth, or both, batteries incorporating such separators, systems incorporating such batteries, and/or related methods of manufacture, use and/or optimization thereof. In accordance with at least certain embodiments, the present invention is related to novel or improved ultra thin or super thin membranes or battery separators, and/or lithium primary batteries, cells or packs incorporating such separators, and/or systems incorporating such batteries, cells or packs.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: July 9, 2019
    Assignee: Celgard, LLC
    Inventors: Paul M. Halmo, Xiaomin Zhang, Paul D. Vido, Zhengming Zhang, Lie Shi, Daniel R. Alexander, Jill V. Watson
  • Patent number: 10347890
    Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: July 9, 2019
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
  • Patent number: 10333125
    Abstract: An improved multilayer laminated microporous battery separator for a lithium ion secondary battery, and/or a method of making or using this separator is provided. The preferred inventive dry process separator is a tri-layer laminated Polypropylene/Polyethylene/Polypropylene microporous membrane with a thickness range of 12 ?m to 30 ?m having improved puncture strength and low electrical resistance for improved cycling and charge performance in a lithium ion battery. In addition, the preferred inventive separator's or membrane's low Electrical Resistance and high porosity provides superior charge rate performance in a lithium battery for high power applications.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 25, 2019
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Lie Shi, William John Paulus
  • Patent number: 10256447
    Abstract: Microporous battery separators, batteries including such separators, and/or methods of making such separators, and/or methods of using such separators. In accordance with at least certain embodiments, an improved or novel battery separator for a secondary or rechargeable lithium battery may have low electrical resistance of less than 0.95 ohm-cm2, or in some cases, less than 0.8 ohm-cm2. Furthermore, the inventive battery separator membrane may provide a means to achieve an improved level of battery performance in a rechargeable or secondary lithium battery based on a possibly synergistic combination of low electrical resistance, low Gurley, low tortuosity, and/or a unique trapezoid shaped pore. In accordance with at least certain multilayer embodiments (by way of example only, a trilayer membrane made of two polypropylene layers with a polyethylene layer in between), the inventive microporous membrane or battery separator may have excellent onset and rate of thermal shutdown performance.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: April 9, 2019
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Lie Shi