Patents by Inventor Xiaorong Cai

Xiaorong Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10150879
    Abstract: An upconverting pigment dispersion includes an upconverting pigment, such as a ?-NaYF4 crystal doped with at least one of Erbium, Ytterbium or Thulium. The upconverting pigment dispersion is aqueous. Upconverting inkjet ink is made by mixing the crystals with a polymer dispersant and water and milling the mixture until the crystal particles are between 50 nanometers and 200 nanometers. Deionized water, a colorant and a humectant are added to the milled mixture.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: December 11, 2018
    Assignee: TROY GROUP, INC.
    Inventors: Xiaorong Cai, Michael R. Riley
  • Patent number: 10113074
    Abstract: An aqueous composition for forming a micro-fluid jet printable dielectric film layer, methods for forming dielectric film layers, and dielectric film layers formed by the method. The aqueous composition includes from about 5 to about 20 percent by 65 weight of a polymeric binder emulsion, from about 10 to about 30 percent by weight of a humectant, from about 0 to about 3 percent by weight of a surfactant, and an aqueous carrier fluid. The aqueous composition has a viscosity ranging from about 2 to about 6 centipoise at a temperature of about 23° C.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 30, 2018
    Assignee: FUNAI ELECTRIC CO., LTD.
    Inventors: Xiaorong Cai, Michael John Dixon, Yimin Guan, Ann P. Holloway, Jeanne Marie Saldanha Singh, Zhigang Xiao
  • Patent number: 10081736
    Abstract: An upconverting pigment dispersion includes an upconverting pigment, such as a ?-NaYF4 crystal doped with at least one of Erbium, Ytterbium or Thulium. The upconverting pigment dispersion is aqueous and, thus, includes water. A dispersant is added to increase the stability of the upconverting pigment of the dispersion.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 25, 2018
    Assignee: TROY GROUP, INC.
    Inventors: Xiaorong Cai, Michael R. Riley
  • Patent number: 10059854
    Abstract: An aqueous penetrating ink includes a pigment and a water-soluble dye. The ink also includes a humectant in which the water-soluble dye is to be at least partially dissolved. The humectant is present in the ink between 20 percent by weight and 70 percent by weight. This amount of humectant results in a slow evaporation rate. The ink also includes water, making it suitable for use with some inkjet printers. Because the pigment is not dissolved in the humectant or the water, it forms an image on the surface of a printed side of a substrate. The slow evaporation rate of the humectant allows it to carry the ink through a thickness of a substrate so that it is visible on a non-printed side of the substrate.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: August 28, 2018
    Assignee: TROY GROUP, INC.
    Inventors: Xiaorong Cai, Brian Lewis, Chelsea Russell, Michael R. Riley
  • Publication number: 20180112093
    Abstract: High security inkjet inks are made my milling two or more functional materials, such as invisible ultraviolet fluorescent dyes or pigments, infrared Anti Stokes upconverting pigments, infrared absorption and fluorescent dyes or pigments and iron oxide magnetic pigments, into a pigment dispersion. A wet media mill is used to mill the pigment dispersion until the average particle size is below 300 nm. The dispersion is combined with main components of an inkjet ink, such as deionized water, humectants, surfactants, polymer resin and biocides, to produce the high security inkjet ink.
    Type: Application
    Filed: October 23, 2017
    Publication date: April 26, 2018
    Inventors: Xiaorong Cai, Michael R. Riley
  • Publication number: 20180114775
    Abstract: Active LEDs have a control transistor in series with an LED and have a top electrode, a bottom electrode, and a control electrode. The active LEDs are microscopic and dispersed in an ink. A substrate has column lines, and the active LEDs are printed at various pixel locations so the bottom electrodes contact the column lines. A hydrophobic mask defines the pixel locations. Due to the printing process, there are different numbers of active LEDs in the various pixel locations. Row lines and control lines contact the top and control electrodes so that the active LEDs in each single pixel location are connected in parallel. If the LEDs emit blue light, red and green phosphors are printed over various pixel locations to create an ultra-thin color display. Any active LED may be addressed using row and column addressing, and the brightness may be controlled using the control lines.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 26, 2018
    Inventors: William Johnstone Ray, Mark David Lowenthal, Richard Austin Blanchard, Lixin Zheng, Xiaorong Cai, Bradley S. Oraw
  • Publication number: 20170309104
    Abstract: A method for creating a secure document, registering the secure document and verifying the authenticity of the secure document includes receiving a print object that has content. A security feature, including an identifier, is created and is associated with the content. The identifier may be a barcode. The barcode may represent a character string. The security feature may include the identifier barcode and a decoy barcode that is not associated with the content. The identifier barcode (or the character string represented by the barcode) and the content are transmitted to a database for storage. Once stored, the identifier and the content are considered to be registered. A print object that includes the security feature and the content is then transmitted to a printer for printing.
    Type: Application
    Filed: February 16, 2016
    Publication date: October 26, 2017
    Inventors: Brian Lewis, Xiaorong Cai, Michael R. Riley, David Altfeder
  • Publication number: 20170260408
    Abstract: An upconverting pigment dispersion includes an upconverting pigment, such as a ?-NaYF4 crystal doped with at least one of Erbium, Ytterbium or Thulium. The upconverting pigment dispersion is aqueous. Upconverting inkjet ink is made by mixing the crystals with a polymer dispersant and water and milling the mixture until the crystal particles are between 50 nanometers and 200 nanometers. Deionized water, a colorant and a humectant are added to the milled mixture.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Xiaorong Cai, Michael R. Riley
  • Patent number: 9747483
    Abstract: A secure document includes a fluorescent barcode and a fluorescent filler printed onto a substrate. The fluorescent barcode is printed using a first fluorescent ink of a first color and the fluorescent filler is printed using a second fluorescent ink of a second color that is different than the first color. In order to read the fluorescent barcode, the secure document must be illuminated with ultraviolet and/or infrared light. Then, a color filter must be used to filter the fluorescent filler out, leaving the fluorescent barcode visible.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: August 29, 2017
    Assignee: TROY GROUP, INC.
    Inventors: Brian Lewis, Xiaorong Cai, Michael R. Riley
  • Publication number: 20170174920
    Abstract: An aqueous penetrating ink includes a pigment and a water-soluble dye. The ink also includes a humectant in which the water-soluble dye is to be at least partially dissolved. The humectant is present in the ink between 20 percent by weight and 70 percent by weight. This amount of humectant results in a slow evaporation rate. The ink also includes water, making it suitable for use with some inkjet printers. Because the pigment is not dissolved in the humectant or the water, it forms an image on the surface of a printed side of a substrate. The slow evaporation rate of the humectant allows it to carry the ink through a thickness of a substrate so that it is visible on a non-printed side of the substrate.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Xiaorong Cai, Brian Lewis, Chelsea Russell, Michael R. Riley
  • Patent number: 9534130
    Abstract: An aqueous MICR inkjet ink includes between 20% to 60% by weight of a magnetic iron oxide with cobalt doping, pigment dispersion, mixed with between 5% to 30% by weight of a humectant, in a water solution emulsion. The dispersion is milled in a wet media mill to obtain particle size in the 150 nm range. Additional humectant, surfactants, jetting agents, and stabilizing additives are added for the final ink composition.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: January 3, 2017
    Assignee: TROY GROUP, INC.
    Inventors: Xiaorong Cai, Michael R. Riley, Brian Lewis
  • Publication number: 20160340531
    Abstract: An upconverting pigment dispersion includes an upconverting pigment, such as a ?-NaYF4 crystal doped with at least one of Erbium, Ytterbium or Thulium. The upconverting pigment dispersion is aqueous and, thus, includes water. A dispersant is added to increase the stability of the upconverting pigment of the dispersion.
    Type: Application
    Filed: December 22, 2015
    Publication date: November 24, 2016
    Inventors: Xiaorong Cai, Michael R. Riley
  • Publication number: 20160312049
    Abstract: An aqueous composition for forming a micro-fluid jet printable dielectric film layer, methods for forming dielectric film layers, and dielectric film layers formed by the method. The aqueous composition includes from about 5 to about 20 percent by 65 weight of a polymeric binder emulsion, from about 10 to about 30 percent by weight of a humectant, from about 0 to about 3 percent by weight of a surfactant, and an aqueous carrier fluid. The aqueous composition has a viscosity ranging from about 2 to about 6 centipoise at a temperature of about 23° C.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Applicant: FUNAI ELECTRIC CO., LTD.
    Inventors: Xiaorong Cai, Michael John Dixon, Yimin Guan, Ann P. Holloway, Jeanne Marie Saldanha Singh, Zhigang Xiao
  • Publication number: 20160247008
    Abstract: A secure document includes a fluorescent barcode and a fluorescent filler printed onto a substrate. The fluorescent barcode is printed using a first fluorescent ink of a first color and the fluorescent filler is printed using a second fluorescent ink of a second color that is different than the first color. In order to read the fluorescent barcode, the secure document must be illuminated with ultraviolet and/or infrared light. Then, a color filter must be used to filter the fluorescent filler out, leaving the fluorescent barcode visible.
    Type: Application
    Filed: December 21, 2015
    Publication date: August 25, 2016
    Inventors: Brian Lewis, Xiaorong Cai, Michael R. Riley
  • Publication number: 20150337150
    Abstract: An aqueous MICR inkjet ink includes between 20% to 60% by weight of a magnetic iron oxide with cobalt doping, pigment dispersion, mixed with between 5% to 30% by weight of a humectant, in a water solution emulsion. The dispersion is milled in a wet media mill to obtain particle size in the 150 nm range. Additional humectant, surfactants, jetting agents, and stabilizing additives are added for the final ink composition.
    Type: Application
    Filed: March 18, 2015
    Publication date: November 26, 2015
    Inventors: Xiaorong Cai, Michael R. Riley, Brian Lewis
  • Patent number: 9123705
    Abstract: Vias (holes) are formed in a wafer or a dielectric layer. A low viscosity conductive ink, containing microscopic metal particles, is deposited over the top surface of the wafer to cover the vias. An external force is applied to urge the ink into the vias, including an electrical force, a magnetic force, a centrifugal force, a vacuum, or a suction force for outgassing the air in the vias. Any remaining ink on the surface is removed by a squeegee, spinning, an air knife, or removal of an underlying photoresist layer. The ink in the vias is heated to evaporate the liquid and sinter the remaining metal particles to form a conductive path in the vias. The resulting wafer may be bonded to one or more other wafers and singulated to form a 3-D module.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: September 1, 2015
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Richard A. Blanchard, William J. Ray, Mark D. Lowenthal, Xiaorong Cai, Theodore Kamins
  • Publication number: 20150076711
    Abstract: Vias (holes) are formed in a wafer or a dielectric layer. A low viscosity conductive ink, containing microscopic metal particles, is deposited over the top surface of the wafer to cover the vias. An external force is applied to urge the ink into the vias, including an electrical force, a magnetic force, a centrifugal force, a vacuum, or a suction force for outgas sing the air in the vias. Any remaining ink on the surface is removed by a squeegee, spinning, an air knife, or removal of an underlying photoresist layer. The ink in the vias is heated to evaporate the liquid and sinter the remaining metal particles to form a conductive path in the vias. The resulting wafer may be bonded to one or more other wafers and singulated to form a 3-D module.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventors: Richard A. Blanchard, William J. Ray, Mark D. Lowenthal, Xiaorong Cai, Theodore Kamins
  • Patent number: 8940627
    Abstract: Vias (holes) are formed in a wafer or a dielectric layer. A low viscosity conductive ink, containing microscopic metal particles, is deposited over the top surface of the wafer to cover the vias. An external force is applied to urge the ink into the vias, including an electrical force, a magnetic force, a centrifugal force, a vacuum, or a suction force for outgassing the air in the vias. Any remaining ink on the surface is removed by a squeegee, spinning, an air knife, or removal of an underlying photoresist layer. The ink in the vias is heated to evaporate the liquid and sinter the remaining metal particles to form a conductive path in the vias. The resulting wafer may be bonded to one or more other wafers and singulated to form a 3-D module.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: January 27, 2015
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Richard A. Blanchard, William J. Ray, Mark D. Lowenthal, Xiaorong Cai, Theodore Kamins
  • Patent number: 8844137
    Abstract: Disclosed is an ejection device for an inkjet printer that includes an ejection chip having a substrate and at least one fluid ejecting element. The ejection device further includes a fluidic structure configured over the ejection chip. The fluidic structure includes a nozzle plate composed of an organic material and includes a plurality of nozzles. The fluidic structure further includes a flow feature layer configured in between the ejection chip and the nozzle plate. The flow feature layer is composed of an organic material and includes a plurality of flow features. Furthermore, the fluidic structure includes a liner layer encapsulating the nozzle plate. The liner layer further at least partially encapsulates each flow feature of the plurality of flow features. The liner layer is composed of an inorganic material. Further disclosed is a method for fabricating the ejection device.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 30, 2014
    Assignee: Funai Electric Co., Ltd.
    Inventors: Xiaorong Cai, Jiandong Fang, Xiaoming Wu, Elaine Yeap Money, Eunki Hong, Yimin Guan, Burton Joyner, II, Sean Terrance Weaver, David Graham, Zach Reitmeier
  • Publication number: 20140138846
    Abstract: Vias (holes) are formed in a wafer or a dielectric layer. A low viscosity conductive ink, containing microscopic metal particles, is deposited over the top surface of the wafer to cover the vias. An external force is applied to urge the ink into the vias, including an electrical force, a magnetic force, a centrifugal force, a vacuum, or a suction force for outgassing the air in the vias. Any remaining ink on the surface is removed by a squeegee, spinning, an air knife, or removal of an underlying photoresist layer. The ink in the vias is heated to evaporate the liquid and sinter the remaining metal particles to form a conductive path in the vias. The resulting wafer may be bonded to one or more other wafers and singulated to form a 3-D module.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 22, 2014
    Applicant: Nthdegree Technologies Worldwide Inc.
    Inventors: Richard A. Blanchard, William J. Ray, Mark D. Lowenthal, Xiaorong Cai