Patents by Inventor Xiaoyi Min

Xiaoyi Min has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12290692
    Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.
    Type: Grant
    Filed: February 13, 2024
    Date of Patent: May 6, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar
  • Patent number: 12285604
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Grant
    Filed: February 8, 2024
    Date of Patent: April 29, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Patent number: 12268886
    Abstract: A computer implemented method and system for monitoring types of capture within a distributed implantable system having a leadless implantable medical device (LIMD) to be implanted entirely within a local chamber of the heart and having a subcutaneous implantable medical device (SIMD) to be located proximate the heart are provided. The method is under control of one or more processors of the SIMD configured with program instructions. The method collects far field (FF) evoked cardiac signals following the pacing pulses delivered by the LIMD for an event and analyzes the FF evoked cardiac signals to identify a type of HIS capture as loss of capture (LOC), selective capture, myocardial tissue-only (MT-only) capture, or a non-selective (NS) capture and records a label for the event based on the type of HIS capture identified.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: April 8, 2025
    Assignee: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Publication number: 20250050096
    Abstract: Provided are an endovascular-stent-based electrode array, a method for manufacturing the same, and an electrical stimulation system. The endovascular-stent-based electrode array includes a stent woven from stent woven wires. The stent woven wires include at least one first metal woven wire, each respective first metal woven wire includes an insulated segment and a conductive segment axially arranged, the insulated segment is electrically insulated from other stent woven wires and a human tissue, and the conductive segment is configured to perform at least one of: delivering a stimulation pulse to a nerve surrounding the human tissue, and sensing an electrical signal from the nerve surrounding the human tissue. A proximal end of the respective first metal woven wire is configured to be electrically connected to an external device, and a distal terminal end of the respective first metal woven wire is electrically insulated from the human tissue.
    Type: Application
    Filed: October 29, 2024
    Publication date: February 13, 2025
    Inventors: XIAOYI MIN, Feng SHI, Xiaofeng ZHAO, Zhou LU, Yan JIANG, Wei GAO, Shijie FAN
  • Publication number: 20240342485
    Abstract: Disclosed are a nerve stimulation apparatus and system, and a control method. The apparatus comprises: a pulse generator, an evoked compound action potential (ECAP) sensor, and a controller. The pulse generator is used for generate a pulse according to an instruction of the controller; the ECAP sensor is used for sensing an evoked compound action potential according to an instruction of the controller; and the controller is used for instructing, after a pulse is generated within a current pulse generation cycle, the ECAP sensor to sense an evoked compound action potential, acquiring a peak-to-peak ratio of the evoked compound action potential, and when the peak-to-peak ratio is not within a comfort range, adjusting the amplitude of a pulse to be generated within a subsequent pulse generation cycle iteratively until the peak-to-peak ratio is within the comfort range.
    Type: Application
    Filed: June 21, 2024
    Publication date: October 17, 2024
    Inventor: XIAOYI MIN
  • Publication number: 20240325738
    Abstract: Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curvate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.
    Type: Application
    Filed: June 12, 2024
    Publication date: October 3, 2024
    Inventors: Gene A. Bornzin, Devan Hughes, Keith Victorine, Zoltan Somogyi, Matthew Nojoomi, Ekaterina Tkatchouk, Xiaoyi Min
  • Publication number: 20240278019
    Abstract: A neural stimulation device is disclosed, including: a pulse generator, an evoked compound action potential (ECAP) sensor, and a neural stimulation controller. The neural stimulation controller instructs the ECAP sensor to sense an ECAP after a pulse is generated by the pulse generator within a first pulse generation cycle, adjust an amplitude of a pulse generated within a second pulse generation cycle in response to a peak-to-peak value of the ECAP being not in a comfort range, and adjust, according to an expected peak-to-peak value, an amplitude of a pulse generated within a third pulse generation cycle in response to a peak-to-peak value of the ECAP after the pulse is generated within the second pulse generation cycle being still not in the comfort range. The expected peak-to-peak value is in the comfort range including an amplitude dimension of the pulse and a peak-to-peak value dimension of the ECAP.
    Type: Application
    Filed: April 26, 2024
    Publication date: August 22, 2024
    Inventors: XIAOYI MIN, Jiangshan WEI
  • Patent number: 12036404
    Abstract: Disclosed herein is a screw-in lead implantable in the pericardium of a patient heart and a system for delivering such leads to an implantation location. The leads include a helical tip electrode and a curvate body including a defibrillator coil with improved contact between the defibrillator coil and the patient heart. The delivery system includes a delivery catheter and lead receiving sheath disposed within the catheter. A fixation tine is disposed on one of the delivery catheter and the lead receiving sheath such that the delivery system may be anchored into the pericardium during fixation of the screw-in lead. In certain implementations, an implantable sleeve receives the leads to bias the defibrillator coil against the patient heart.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: July 16, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Devan Hughes, Keith Victorine, Zoltan Somogyi, Matthew Nojoomi, Ekaterina Tkatchouk, Xiaoyi Min
  • Patent number: 12017078
    Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include the IMD using an accelerometer to identify when the orientation of the IMD is such that the IMD will likely be able to successfully communicate with another IMD via one or more communication pulses sent from the IMD to the other IMD. The method also includes the IMD sending of the one or more communication pulses, that are used to communicate with the other IMD, when the orientation of the IMD is such that the IMD will likely be able to successfully communicate with the other IMD via one or more communication pulses sent from the IMD to the other IMD.
    Type: Grant
    Filed: March 22, 2023
    Date of Patent: June 25, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
  • Publication number: 20240198119
    Abstract: The present disclosure provides systems and methods for applying anti-tachycardia pacing (ATP) using subcutaneous implantable cardioverter-defibrillators (SICDs). An SICD implantable in a subject includes a case including a controller, and at least one conductive lead extending from the case. The at least one conductive lead includes a plurality of coil electrodes, wherein the SICD is configured, via the controller, to apply anti-tachycardia pacing (ATP) to the subject using the at least one conductive lead.
    Type: Application
    Filed: March 1, 2024
    Publication date: June 20, 2024
    Inventors: Gene A. Bornzin, Xiaoyi Min, Wenwen Li, Stuart Rosenberg, Kyungmoo Ryu, Alexander R. Bornzin, Leyla Sabet, Shubha Asopa, Xing Pei
  • Publication number: 20240181265
    Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.
    Type: Application
    Filed: February 13, 2024
    Publication date: June 6, 2024
    Applicant: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar
  • Publication number: 20240181259
    Abstract: A neural stimulation device is provided, including: a neural stimulation controller, a pulse generator, and an evoked compound action potential (ECAP) sensor. The neural stimulation controller is configured to: instruct the ECAP sensor to turn on while instructing the pulse generator to generate the pulse, instruct the ECAP sensor to sense the evoked compound action potential after instructing the pulse generator to generate the stimulation pulse and elapsing of a sensing delay time, and instruct the ECAP sensor to turn off after instructing the ECAP sensor to sense the evoked compound action potential and elapsing of an ECAP window time. The sensing delay time is the greater of a total duration of the pulse and a predetermined time.
    Type: Application
    Filed: February 13, 2024
    Publication date: June 6, 2024
    Inventors: XIAOYI MIN, Jianjiang YAO, Jianfeng ZHANG
  • Publication number: 20240181250
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Application
    Filed: February 8, 2024
    Publication date: June 6, 2024
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Patent number: 11957916
    Abstract: Implantable medical devices (IMDs), systems, and methods for use therewith are disclosed. One such method is for use by a leadless pacemaker (LP) configured to perform conductive communication with another implantable medical device (IMD). The method includes the LP storing information that specifies when, within a cardiac cycle, the LP and the other IMD implanted in a patient are likely oriented relative to one another such that conductive communication therebetween should be successful. The method also includes the LP sensing a signal indicative of cardiac activity of the patient over a plurality of cardiac cycles, and outputting one or more conductive communication pulses, during a portion of at least one of the cardiac cycles, wherein the portion of the at least one of the cardiac cycles is identified based on the signal that is sensed and the information that is stored.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: April 16, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
  • Patent number: 11951319
    Abstract: The present disclosure provides systems and methods for applying anti-tachycardia pacing (ATP) using subcutaneous implantable cardioverter-defibrillators (SICDs). An SICD implantable in a subject includes a case including a controller, and at least one conductive lead extending from the case. The at least one conductive lead includes a plurality of coil electrodes, wherein the SICD is configured, via the controller, to apply anti-tachycardia pacing (ATP) to the subject using the at least one conductive lead.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 9, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Xiaoyi Min, Wenwen Li, Stuart Rosenberg, Kyungmoo Ryu, Alexander Bornzin, Leyla Sabet, Shubha Asopa, Xing Pei
  • Patent number: 11931590
    Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: March 19, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar
  • Patent number: 11931568
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: March 19, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Publication number: 20240001126
    Abstract: System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Aditya Goil, Xiaoyi Min, Wenwen Li, Yun Qiao, Jan O. Mangual-Soto, Carin Folman
  • Publication number: 20230397875
    Abstract: A system and method for modeling patient-specific spinal cord stimulation (SCS) is disclosed. The system and method acquire impedance and evoked compound action potential (ECAP) signals from a lead positioned proximate to a spinal cord (SC). The lead includes at least one electrode. The system and method determine a patient-specific anatomical model based on the impedance and ECAP signals, and transform a dorsal column (DC) map template based on a DC boundary of the patient-specific anatomical model. Further, the system and method map the transformed DC map template to the patient-specific anatomical model. The system and method may also include the algorithms to solve extracellular and intracellular domain electrical fields and propagation along neurons. The system and method may also include the user interfaces to collect patient responses and compare with the patient-specific anatomical model as well as using the patient-specific anatomical model for guiding SCS programming.
    Type: Application
    Filed: August 29, 2023
    Publication date: December 14, 2023
    Inventors: Xiaoyi Min, Alexander Kent
  • Patent number: 11806536
    Abstract: System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: November 7, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Aditya Goil, Xiaoyi Min, Wenwen Li, Yun Qiao, Jan O. Mangual-Soto, Carin Folman