Patents by Inventor Xiaoyi Min
Xiaoyi Min has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11291834Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.Type: GrantFiled: August 3, 2020Date of Patent: April 5, 2022Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
-
Publication number: 20220072303Abstract: System and methods are provided herein and include a HIS electrode configured to be located proximate to a HIS bundle and to at least partially define a HIS sensing vector. They system includes memory to store program instructions and cardiac activity (CA) signals for a series of beats utilizing a candidate sensing configuration. The candidate sensing configuration is defined by i) the HIS sensing vector and ii) a sensing channel that utilizes sensing circuitry configured to operate based on one or more sensing settings to detect near field and far field activity. The system includes one or more processors that, when executing the program instructions, are configured to analyze the CA signals to obtain an atrial (A) feature of interest (FOI) and a ventricular (V) FOI for the corresponding beats within the series of beats and identify a V-A FOI relation between the A FOIs and the V FOIs across the series of beats.Type: ApplicationFiled: September 8, 2020Publication date: March 10, 2022Inventors: Aditya Goil, Xiaoyi Min, Wenwen Li, Yun Qiao, Jan O. Mangual-Soto, Carin Folman
-
Publication number: 20220062644Abstract: Systems and methods for implanting a lead. The system includes an active guidewire having proximal and distal ends. The distal end includes a guidewire anchor that is configured to be attached to a target SOI. The active guidewire is configured to be utilized to electrically map the target SOI by at least one of delivering stimulation energy through the active guide wire to the target SOI or sensing an evoked response at the target SOI from the guidewire. The system also includes a lead having a lead body with proximal and distal ends and with a lumen extending between the proximal and distal ends. The distal end of the lead body is configured to receive the proximal end of the active guidewire. The lumen is configured to permit the lead body to be advanced over the active guidewire.Type: ApplicationFiled: August 31, 2020Publication date: March 3, 2022Inventors: Alexander R. Bornzin, Gene A. Bornzin, Zoltan Somogyi, Wenwen Li, Xiaoyi Min
-
Publication number: 20210393967Abstract: A system and method are provided. The system includes a HIS electrode configured to be located proximate to a HIS bundle. A pulse generator is coupled to the HIS electrode and is configured to deliver HIS bundle pacing (HBP), a right atrial (RA) electrode is located in a right atrium, a sensing circuitry coupled to the RA electrode and defines an RA sensing channel that does not utilize the HIS electrode. The system includes a memory including program instructions. The system includes a processor is configured to collect cardiac activity (CA) signals over the RA sensing channel utilizing the RA electrode. The CA signals include a far field (FF) component associated with a ventricular event (VE). The processor analyzes the FF component to identify first and second FF component (FFC) characteristics of interest (COI) of the ventricular event and utilizes the first FFC COI to apply a first capture class (CC) discriminator to distinguish between first and second capture classes.Type: ApplicationFiled: June 18, 2020Publication date: December 23, 2021Inventors: Xiaoyi Min, Wenwen Li, Yun Qiao, Aditya Goil
-
Publication number: 20210370078Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.Type: ApplicationFiled: May 14, 2021Publication date: December 2, 2021Applicant: Pacesetter, Inc.Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar
-
Publication number: 20210361954Abstract: Cardiac pacing is performed using leadless pacemakers (LPs). An AV delay is determined based on a P-wave duration. When pacing occurs during cardiac cycles starting with intrinsic atrial events, the AV delay is set to the P-wave duration plus a first offset if the P-wave duration is greater than a first threshold duration, and the AV delay is set to the P-wave duration plus a second offset that is greater than the first offset, if the P-wave duration is less than the first threshold duration. When pacing occurs during cardiac cycles starting with paced atrial events, the AV delay is set to the P-wave duration plus a third offset, if the P-wave duration is greater than a second threshold duration, or is set to the P-wave duration plus a fourth offset that is greater than the third offset, if the P-wave duration is less than the second threshold duration.Type: ApplicationFiled: August 4, 2021Publication date: November 25, 2021Applicant: Pacesetter, Inc.Inventor: Xiaoyi Min
-
Publication number: 20210345900Abstract: A computer implemented method and system to detect P-waves in cardiac activity is provided. The system includes memory to store specific executable instructions. One or more processors are configured to execute the specific executable instructions for obtaining far field cardiac activity (CA) signals for a series of beats, applying a P-wave template to at least one sub-segment of the CA signals to obtain an alignment indicator and calculating an amplitude dependence (AD) indicator based at least in part on the P-wave template and the at least one sub-segment. The system analyzes the alignment indicator based on a first criteria, compares the AD indicator with a second criteria, designates a candidate P-wave to be an actual P-wave based on the analyzing and comparing and records results of the designating.Type: ApplicationFiled: May 11, 2020Publication date: November 11, 2021Inventors: Gene A. Bornzin, Chunlan Jiang, Jong Gill, Xiaoyi Min, Kyungmoo Ryu, Gabriel A. Mouchawar
-
Publication number: 20210330986Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include controlling communication pulse parameter(s) of one or more communication pulses (produced by pulse generator(s)) based on accelerator output(s) indicative of the orientation of the IMD. The communication pulse parameter(s) that is/are controlled can be, e.g., communication pulse amplitude, communication pulse width, communication pulse timing, and/or communication pulse morphology. Such embodiments can be used to improve conductive communications between IMDs whose orientation relative to one another may change over time, e.g., due to changes in posture and/or due to cardiac motion over a cardiac cycle.Type: ApplicationFiled: July 8, 2021Publication date: October 28, 2021Applicant: Pacesetter, Inc.Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
-
Patent number: 11147980Abstract: A method and system for managing an implantable medical device (IMD) based on left ventricular hypertrophy (LVH) are provided. The method collects cardiac activity (CA) signals from one or more implantable electrodes at corresponding sensing sites. The method utilizes one or more processors to perform identifying a characteristic of interest from the CA signals, analyzing the characteristic of interest from the CA signals to identify an LVH state indicative of at least one of an occurrence or degree of LVH experienced by the patient, calculating a DFT expectation based on the LVH state and determining, based on the DFT expectation, at least one of i) a defibrillation shock parameter or ii) a maximum energy capacity of the IMD for implant.Type: GrantFiled: April 11, 2019Date of Patent: October 19, 2021Assignee: Pacesetter, Inc.Inventor: Xiaoyi Min
-
Patent number: 11129993Abstract: A computer implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains cardiac activity (CA) signals at the electrodes of an implantable medical device (IMD) in connection multiple cardiac beats and with different IMD orientations relative to gravitational force. The method obtains acceleration signatures at a sensor of the IMD that are indicative of heart sounds generated during the cardiac beats. The method obtains device location information at the IMD, with respect to the gravitational force during the cardiac beats. The method groups the acceleration signatures associated with the first and second set of cardiac beats into the corresponding one of first and second posture bins based on the device location information.Type: GrantFiled: August 9, 2018Date of Patent: September 28, 2021Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Kyungmoo Ryu, Thanh Tieu, Gene A. Bornzin, Stuart Rosenberg
-
Publication number: 20210290965Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 is configured to time delivery of one or more pacing pulses delivered to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. The LP1 is also configured to transmit implant-to-implant (i2i) messages to the LP2. The LP2 is configured to time delivery of one or more pacing pulses delivered to the second chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP2 from the LP1.Type: ApplicationFiled: May 26, 2021Publication date: September 23, 2021Applicant: Pacesetter, Inc.Inventors: Xiaoyi Min, Matthew G. Fishler
-
Publication number: 20210259611Abstract: Computer implemented methods and systems for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains a far field cardiac activity (CA) data set that includes far field CA signals for beats. The method applies a feature enhancement function to the CA signals to form an enhanced feature in the CA data set. The method calculates an adaptive sensitivity level and sensitivity limit based on the enhanced feature from one or more beats within the CA data set and automatically iteratively analyzes a beat segment of interest by comparing the beat segment of interest to the current sensitivity level to determine whether one or more R-waves are present within the beat segment of interest.Type: ApplicationFiled: April 28, 2021Publication date: August 26, 2021Inventors: Fady Dawoud, Fujian Qu, Stuart Rosenberg, Gene A. Bornzin, Jong Gill, Neha Malhotra, Xiaoyi Min
-
Patent number: 11097113Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 uses at least two of its electrodes to transmit and receive implant-to-implant (i2i) messages to and from the LP2. During one or more periods of time, the LP1 times delivery of pacing pulse(s) to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. During one or more further periods of time, the LP1 times delivery of pacing pulse(s) to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP1 from the LP2.Type: GrantFiled: January 7, 2019Date of Patent: August 24, 2021Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Matthew G. Fishler
-
Systems and methods for performing cardiac resynchronization therapy (CRT) using leadless pacemakers
Patent number: 11097116Abstract: Embodiments of the present technology described herein are directed to implantable systems for performing cardiac resynchronization therapy (CRT), methods for use therewith, and leadless pacemakers for use therewith. Such a system can include a first leadless pacemaker configured to be implanted in or on the right atrial (RA) chamber and selectively pace the RA chamber, a second leadless pacemaker configured to be implanted in or on the right ventricular (RV) chamber and selectively pace the RV chamber, and a third leadless pacemaker configured to be implanted in or on the left ventricular (LV) chamber and selectively pace the LV chamber, wherein one of the leadless pacemaker is designated a master leadless pacemaker. In certain embodiments, the master leadless pacemaker determines a VV delay and an AV delay and coordinates CRT using such delays.Type: GrantFiled: May 24, 2019Date of Patent: August 24, 2021Assignee: Pacesetter, Inc.Inventor: Xiaoyi Min -
Patent number: 11090493Abstract: A system and method for controlling non-paresthesia stimulation of neural tissue of a patient. The method delivers a non-paresthesia stimulation waveform, senses sensory action potential (SAP) signals from the neural tissue of interest and analyzes the SAP signals to obtain SAP activity data for at least one of an SAP C-fiber component or an SAP A-delta fiber component. The method determines whether the SAP activity data satisfies a criteria of interest and adjusts at least one of the therapy parameters to change the non-paresthesia stimulation waveform when the SAP activity data does not satisfy the criteria of interest.Type: GrantFiled: April 30, 2019Date of Patent: August 17, 2021Assignee: PACESETTER, INC.Inventors: Wenbo Hou, Melanie Goodman Keiser, Xiaoyi Min, Bruce A. Morley
-
Patent number: 11090497Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include controlling communication pulse parameter(s) of one or more communication pulses (produced by pulse generator(s)) based on accelerometer output(s) indicative of the orientation of the IMD. The communication pulse parameter(s) that is/are controlled can be, e.g., communication pulse amplitude, communication pulse width, communication pulse timing, and/or communication pulse morphology. Such embodiments can be used to improve conductive communications between IMDs whose orientation relative to one another may change over time, e.g., due to changes in posture and/or due to cardiac motion over a cardiac cycle.Type: GrantFiled: October 25, 2018Date of Patent: August 17, 2021Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
-
Publication number: 20210228093Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.Type: ApplicationFiled: April 14, 2021Publication date: July 29, 2021Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
-
Patent number: 11071872Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 is configured to time delivery of one or more pacing pulses delivered to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. The LP1 is also configured to transmit implant-to-implant (i2i) messages to the LP2. The LP2 is configured to time delivery of one or more pacing pulses delivered to the second chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP2 from the LP1.Type: GrantFiled: January 7, 2019Date of Patent: July 27, 2021Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Matthew G. Fishler
-
Patent number: 11045643Abstract: Methods and devices include making an incision at a single site of a patient. The single site located at an anterior of a chest or abdomen. The method also includes inserting a tunneling tool through the incision at the single site and preparing a first tunnel to a subcutaneous posterior location. A path of the first tunnel at least one of i) extends over a plurality of Intercostal gaps of the chest or ii) extends along and within one of the intercostal gaps. The method also includes positioning a first lead having an electrode within the first tunnel and preparing a second tunnel to a subcutaneous parasternal location along the chest. The method also includes positioning a second lead having an electrode within the second tunnel and positioning a pulse generator within a subcutaneous pocket and operatively coupling the first and second leads to the pulse generator.Type: GrantFiled: May 7, 2018Date of Patent: June 29, 2021Assignee: Pacesetter, Inc.Inventors: Avi Fischer, Xiaoyi Min, Kyungmoo Ryu, Gene A. Bornzin, Keith Victorine, Stuart Rosenberg, Shubha Asopa
-
Patent number: 11020036Abstract: Computer implemented methods and systems for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains a far field cardiac activity (CA) data set that includes far field CA signals for beats. The method applies a feature enhancement function to the CA signals to form an enhanced feature in the CA data set. The method calculates an adaptive sensitivity level and sensitivity limit based on the enhanced feature from one or more beats within the CA data set and automatically iteratively analyzes a beat segment of interest by comparing the beat segment of interest to the current sensitivity level to determine whether one or more R-waves are present within the beat segment of interest.Type: GrantFiled: May 7, 2018Date of Patent: June 1, 2021Assignee: PACESETTER, INC.Inventors: Fady Dawoud, Fujian Qu, Stuart Rosenberg, Gene A. Bornzin, Jong Gill, Neha Malhotra, Xiaoyi Min