Patents by Inventor Xiaoyu Yu

Xiaoyu Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160220294
    Abstract: An endovascular near critical fluid based cryoablation catheter for creating an elongated lengthwise-continuous lesion in tissue can comprise an elongated shaft, a flexible distal tissue treatment section, and a distal tip. A plurality of flexible tubes can extend through the distal treatment section to transport a near critical fluid to and from the distal tip. The distal treatment section can also include a flexible fluid-sealed cover or barrier layer surrounding the delivery tubes. The cover and tubes can collectively define a space which is filled with a fluidic thermally conductive media. The thermally conductive media, fluid delivery tubes, and the cover can be arranged such that a flow of the near critical fluid through the tube bundle transfers heat between a target tissue and the distal treatment section of the catheter thereby creating the elongated lengthwise-continuous lesion in the tissue.
    Type: Application
    Filed: September 22, 2014
    Publication date: August 4, 2016
    Applicant: Adagio Medical, Inc.
    Inventors: Alexei V. Babkin, Steven W. Kovalcheck, Xiaoyu Yu
  • Patent number: 9402534
    Abstract: An optical scanning probe comprises a handle to receive a light beam from a light guide; a cannula, extending from a distal end of the handle; a fiber, positioned partially inside the handle and partially inside the cannula, to guide the received light beam toward a distal end of the cannula; a rotating scanner, rotatably positioned at least partially inside the cannula and configured to house a proximal portion of the fiber; and a deflecting scanner, movably coupled to a distal end of the rotating scanner, configured to deflect a distal portion of the fiber, wherein the distal portion of the fiber is configured to emit and scan the guided light in a target region.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: August 2, 2016
    Assignee: NOVARTIS AG
    Inventors: Lingfeng Yu, Xiaoyu Yu, Jack Auld
  • Publication number: 20150164311
    Abstract: An optical scanning probe comprises a handle to receive a light beam from a light guide; a cannula, extending from a distal end of the handle; a fiber, positioned partially inside the handle and partially inside the cannula, to guide the received light beam toward a distal end of the cannula; a rotating scanner, rotatably positioned at least partially inside the cannula and configured to house a proximal portion of the fiber; and a deflecting scanner, movably coupled to a distal end of the rotating scanner, configured to deflect a distal portion of the fiber, wherein the distal portion of the fiber is configured to emit and scan the guided light in a target region.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Alcon Research, Ltd.
    Inventors: Lingfeng Yu, Xiaoyu Yu, Jack Auld
  • Publication number: 20130035551
    Abstract: An articulating optical surgical probe includes a handle sized to fit in a single hand and a single rigid cannula extending from the handle having a diameter of 20 Ga or less. The probe further includes a slotted tip at a distal end of the cannula and at least one optical fiber extending through the handle, the single rigid cannula and the slotted tip, and a pull-wire secured to the slotted tip. When the pull-wire exerts tension on the slotted tip, the slotted tip will deviate from straight to a bend angle controlled by the tension in the pull-wire. The slotted tip is formed from a resilient material that will restore to the straight position when the tension exerted by the pull-wire is released.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Inventors: Xiaoyu Yu, Christopher McCollam, Jack Auld
  • Patent number: 7823011
    Abstract: Exemplary embodiments of the present invention comprise a method for the use of an intra-disk redundancy storage protection operation for the scrubbing of a disk. The method comprises initiating a disk scrubbing operation upon each disk of a plurality of disks that are comprised within a storage disk array, issuing a disk scrubbing command for a predetermined segment of the disks that are comprised within the storage disk array at a predetermined time interval, and identifying an unrecoverable segment on a disk. The method further comprises determining if unrecoverable sectors comprised within the unrecoverable segment can be reconstructed, and reconstructing the unrecoverable sectors of the unrecoverable segment and relocating the segment to a spare storage location on the disk in the event that the segment cannot be reconstructed within its original storage location.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ajay Dholakia, Ilias Iliadis, Robert Haas, Xiaoyu-Yu Hu, Evangelos S. Eleftheriou, Roman A. Pletka
  • Publication number: 20090055681
    Abstract: Exemplary embodiments of the present invention comprise a method for the use of an intra-disk redundancy storage protection operation for the scrubbing of a disk. The method comprises initiating a disk scrubbing operation upon each disk of a plurality of disks that are comprised within a storage disk array, issuing a disk scrubbing command for a predetermined segment of the disks that are comprised within the storage disk array at a predetermined time interval, and identifying an unrecoverable segment on a disk. The method further comprises determining if unrecoverable sectors comprised within the unrecoverable segment can be reconstructed, and reconstructing the unrecoverable sectors of the unrecoverable segment and relocating the segment to a spare storage location on the disk in the event that the segment cannot be reconstructed within its original storage location.
    Type: Application
    Filed: August 22, 2007
    Publication date: February 26, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ajay Dholakia, Ilias Iliadis, Robert Haas, Xiaoyu-Yu Hu, Evangelos S. Eleftheriou, Roman A. Pletka
  • Patent number: 6936045
    Abstract: The malleable cryosurgical probe includes a cryostat assembly and a cryoprobe assembly. The cryostat assembly includes an elongated shaft assembly having at least one malleable segment thereof and a closed distal end. The shaft assembly includes at least one freezing portion, at least one thermally insulated portion and a thermally insulating element positioned about the thermally insulated portion. A cryostat is operably associated with the elongated shaft assembly. It includes a cryostat inlet for receiving gas entering the cryostat, a cryostat outlet and a heat exchanger positioned between the cryostat outlet and the cryostat inlet. The heat exchanger receives gas from the cryostat inlet and provides heat transfer between gas flowing within the cryostat and fluid exterior thereto. At least one Joule-Thomson nozzle is in fluid communication with the cryostat outlet. The at least one Joule-Thomson nozzle expands gas expelled therefrom.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: August 30, 2005
    Assignee: Endocare, Inc.
    Inventors: Xiaoyu Yu, Jay J. Eum, David J. Battles
  • Publication number: 20050055017
    Abstract: The malleable cryosurgical probe includes a cryostat assembly and a cryoprobe assembly. The cryostat assembly includes an elongated shaft assembly having a bellows portion thereof and a closed distal end. The shaft assembly includes at least one freezing portion comprising the bellows portion, at least one thermally insulated portion and a thermally insulating element positioned about the thermally insulated portion. A cryostat is operably associated with the elongated shaft assembly. It includes a cryostat inlet for receiving gas entering the cryostat, a cryostat outlet and a heat exchanger positioned between the cryostat outlet and the cryostat inlet. The heat exchanger receives gas from the cryostat inlet and provides heat transfer between gas flowing within the cryostat and fluid exterior thereto. At least one Joule-Thomson nozzle is in fluid communication with the cryostat outlet. The at least one Joule-Thomson nozzle expands gas expelled therefrom.
    Type: Application
    Filed: July 21, 2004
    Publication date: March 10, 2005
    Inventors: Sanford Damasco, Dennis Bui, Xiaoyu Yu
  • Patent number: 6767346
    Abstract: The malleable cryosurgical probe includes a cryostat assembly and a cryoprobe assembly. The cryostat assembly includes an elongated shaft assembly having a bellows portion thereof and a closed distal end. The shaft assembly includes at least one freezing portion comprising the bellows portion, at least one thermally insulated portion and a thermally insulating element positioned about the thermally insulated portion. A cryostat is operably associated with the elongated shaft assembly. It includes a cryostat inlet for receiving gas entering the cryostat, a cryostat outlet and a heat exchanger positioned between the cryostat outlet and the cryostat inlet. The heat exchanger receives gas from the cryostat inlet and provides heat transfer between gas flowing within the cryostat and fluid exterior thereto. At least one Joule-Thomson nozzle is in fluid communication with the cryostat outlet. The at least one Joule-Thomson nozzle expands gas expelled therefrom.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: July 27, 2004
    Assignee: Endocare, Inc.
    Inventors: Sanford D. Damasco, Dennis M. Bui, Xiaoyu Yu
  • Publication number: 20040073203
    Abstract: A cryosurgical probe includes an actuator housing assembly and an actuator assembly. The actuator housing assembly includes an actuator housing having an elongated central opening therethrough. The actuator housing has a proximal end portion and a distal end portion. A delivery system for a cryogenic fluid, includes a first end secured to the proximal end portion of the actuator housing. An insulation layer has a proximal portion securely attached to the proximal end portion of the actuator housing. An actuator assembly includes a rotatable actuator having a portion thereof contained within the actuator housing. The rotatable actuator is rotatable relative to the actuator housing. A cryosurgical shaft assembly is securely attached to the rotatable actuator. The insulation layer extends along an inner surface of the cryosurgical shaft to define insulated portions of the cryosurgical shaft and uninsulated portions.
    Type: Application
    Filed: September 2, 2003
    Publication date: April 15, 2004
    Inventors: Xiaoyu Yu, Sanford D. Damasco, Jay J. Eum
  • Publication number: 20030055415
    Abstract: The malleable cryosurgical probe includes a cryostat assembly and a cryoprobe assembly. The cryostat assembly includes an elongated shaft assembly having at least one malleable segment thereof and a closed distal end. The shaft assembly includes at least one freezing portion, at least one thermally insulated portion and a thermally insulating element positioned about the thermally insulated portion. A cryostat is operably associated with the elongated shaft assembly. It includes a cryostat inlet for receiving gas entering the cryostat, a cryostat outlet and a heat exchanger positioned between the cryostat outlet and the cryostat inlet. The heat exchanger receives gas from the cryostat inlet and provides heat transfer between gas flowing within the cryostat and fluid exterior thereto. At least one Joule-Thomson nozzle is in fluid communication with the cryostat outlet. The at least one Joule-Thomson nozzle expands gas expelled therefrom.
    Type: Application
    Filed: September 20, 2001
    Publication date: March 20, 2003
    Inventors: Xiaoyu Yu, Jay J. Eum, David J. Battles
  • Publication number: 20030055416
    Abstract: The malleable cryosurgical probe includes a cryostat assembly and a cryoprobe assembly. The cryostat assembly includes an elongated shaft assembly having a bellows portion thereof and a closed distal end. The shaft assembly includes at least one freezing portion comprising the bellows portion, at least one thermally insulated portion and a thermally insulating element positioned about the thermally insulated portion. A cryostat is operably associated with the elongated shaft assembly. It includes a cryostat inlet for receiving gas entering the cryostat, a cryostat outlet and a heat exchanger positioned between the cryostat outlet and the cryostat inlet. The heat exchanger receives gas from the cryostat inlet and provides heat transfer between gas flowing within the cryostat and fluid exterior thereto. At least one Joule-Thomson nozzle is in fluid communication with the cryostat outlet. The at least one Joule-Thomson nozzle expands gas expelled therefrom.
    Type: Application
    Filed: January 23, 2002
    Publication date: March 20, 2003
    Inventors: Sanford D. Damasco, Dennis M. Bui, Xiaoyu Yu
  • Patent number: 6530234
    Abstract: A miniature refrigeration system and method of operation. A primary refrigerant is pressurized by a compressor to a relatively low pressure, for safety reasons. The compressed primary refrigerant is passed through a primary-to-secondary heat exchanger, to precool the gas mixture. The secondary side of the primary-to-secondary heat exchanger is cooled by a secondary refrigeration system. The primary refrigerant exiting the primary outlet of the primary-to-secondary heat exchanger passes to a primary Joule-Thomson expansion element where the high pressure gas is expanded to a lower temperature. This low temperature gas cools a heat transfer element mounted in the outer wall of the catheter or cryoprobe, to cool surrounding tissue. Return gas can flow back through a distal primary-to-primary heat exchanger to further cool the incoming high pressure gas mixture. A proximal primary-to-primary heat exchanger can be added between the primary-to-secondary heat exchanger and the primary compressor.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: March 11, 2003
    Assignee: CryoGen, Inc.
    Inventors: John D. Dobak, III, Terry L. Brown, Kambiz Ghaerzadeh, Xiaoyu Yu
  • Patent number: 6475212
    Abstract: A sheath for use on a closed loop Joule-Thomson cryosurgical probe, and the combination of the and the closed loop probe. The sheath is slipped over the probe, thereby separating the probe from the environment. The sheath has a grip which fits over the handle of the cryosurgical probe, and an extendible shroud which can be longitudinally extended to cover tubing and which are attached to the handle. The sheath has a hollow multi-lumen catheter shaped and sized to fit snugly over the cannula of the cryosurgical probe. The catheter is not thermally conductive, preventing transfer of heat from the ambient to the gas mixture, and preventing the freezing of tissues at undesired locations along the catheter. A thermally conductive cap or tip is attached to the distal end of the hollow catheter. The thermally conductive cap or tip fits snugly over the cold tip on the probe, and it efficiently transfers heat from the target tissue to the cold tip, which in turn transfers heat to the expanded gas mixture.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: November 5, 2002
    Assignee: CryoGen, Inc.
    Inventors: John D. Dobak, III, Kambiz Ghaerzadeh, Xiaoyu Yu
  • Publication number: 20010037812
    Abstract: A sheath for use on a closed loop Joule-Thomson cryosurgical probe, and the combination of the and the closed loop probe. The sheath is slipped over the probe, thereby separating the probe from the environment. The sheath has a grip which fits over the handle of the cryosurgical probe, and an extendible shroud which can be longitudinally extended to cover tubing and which are attached to the handle. The sheath has a hollow multi-lumen catheter shaped and sized to fit snugly over the cannula of the cryosurgical probe. The catheter is not thermally conductive, preventing transfer of heat from the ambient to the gas mixture, and preventing the freezing of tissues at undesired locations along the catheter. A thermally conductive cap or tip is attached to the distal end of the hollow catheter. The thermally conductive cap or tip fits snugly over the cold tip on the probe, and it efficiently transfers heat from the target tissue to the cold tip, which in turn transfers heat to the expanded gas mixture.
    Type: Application
    Filed: February 22, 2001
    Publication date: November 8, 2001
    Inventors: John D. Dobak, Kambiz Ghaerzadeh, Xiaoyu Yu
  • Patent number: 6193644
    Abstract: A sheath for use on a closed loop Joule-Thomson cryosurgical probe, and the combination of the and the closed loop probe. The sheath is slipped over the probe, thereby separating the probe from the environment. The sheath has a grip which fits over the handle of the cryosurgical probe, and an extendible shroud which can be longitudinally extended to cover tubing and which are attached to the handle. The sheath has a hollow multi-lumen catheter shaped and sized to fit snugly over the cannula of the cryosurgical probe. The catheter is not thermally conductive, preventing transfer of heat from the ambient to the gas mixture, and preventing the freezing of tissues at undesired locations along the catheter. A thermally conductive cap or tip is attached to the distal end of the hollow catheter. The thermally conductive cap or tip fits snugly over the cold tip on the probe, and it efficiently transfers heat from the target tissue to the cold tip, which in turn transfers heat to the expanded gas mixture.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: February 27, 2001
    Assignee: CryoGen, Inc.
    Inventors: John D. Dobak, III, Kambiz Ghaerzadeh, Xiaoyu Yu
  • Patent number: 6070415
    Abstract: A miniature refrigeration system and method of operation. A primary refrigerant is pressurized by a compressor to a relatively low pressure, for safety reasons. The compressed primary refrigerant is passed through a primary-to-secondary heat exchanger, to precool the gas mixture. The secondary side of the primary-to-secondary heat exchanger is cooled by a secondary refrigeration system. The primary refrigerant exiting the primary outlet of the primary-to-secondary heat exchanger passes to a primary Joule-Thomson expansion element where the high pressure gas is expanded to a lower temperature. This low temperature gas cools a heat transfer element mounted in the outer wall of the catheter or cryoprobe, to cool surrounding tissue. Return gas can flow back through a distal primary-to-primary heat exchanger to further cool the incoming high pressure gas mixture. A proximal primary-to-primary heat exchanger can be added between the primary-to-secondary heat exchanger and the primary compressor.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: June 6, 2000
    Assignee: CryoGen, Inc.
    Inventors: John D. Dobak, III, Terry L. Brown, Kambiz Ghaerzadeh, Xiaoyu Yu
  • Patent number: 5910104
    Abstract: A disposable, sterilizable sheath for use on a closed loop Joule-Thomson cryosurgical probe, and the combination of the disposable sheath and the closed loop probe. The sheath is slipped over the probe, thereby separating the probe from the environment. The sheath has a grip which fits over the handle of the cryosurgical probe, and an extendible shroud which can be longitudinally extended to cover tubing and which are attached to the handle. The sheath has a hollow multi-lumen catheter shaped and sized to fit snugly over the cannula of the cryosurgical probe. The catheter is not thermally conductive, preventing transfer of heat from the ambient to the gas mixture, and preventing the freezing of tissues at undesired locations along the catheter. A thermally conductive cap or tip is attached to the distal end of the hollow catheter.
    Type: Grant
    Filed: December 26, 1996
    Date of Patent: June 8, 1999
    Assignee: CryoGen, Inc.
    Inventors: John D. Dobak, III, Kambiz Ghaerzadeh, Xiaoyu Yu
  • Patent number: 5758505
    Abstract: A miniature mixed gas refrigeration system and method of operation are disclosed. An optimum gas mixture is formulated from a group of component fluids, according to calculated thermodynamic properties of a group of candidate fluid mixtures. The gas mixture is pressurized by a compressor to a pressure less than 420 psia, for safety reasons. The compressed gas mixture is passed through a primary heat exchanger, and then through a primary-to-secondary heat exchanger, to precool the gas mixture. The secondary side of the primary/secondary heat exchanger is cooled by a secondary Joule-Thomson refrigeration system. Properly sized flow restrictions in the primary side of the primary/secondary heat exchanger can solidify and trap liquid contaminants that may be in the gas mixture. The gas mixture exiting the primary outlet of the primary/secondary heat exchanger passes to a primary Joule-Thomson expansion element where the high pressure gas is expanded isenthalpically to a lower temperature at least as low as 183K.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: June 2, 1998
    Assignee: CryoGen, Inc.
    Inventors: John D. Dobak, III, Terry L. Brown, Kambiz Ghaerzadeh, Xiaoyu Yu
  • Patent number: D497206
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: October 12, 2004
    Assignee: Endocare, Inc.
    Inventors: Sanford D. Damasco, Xiaoyu Yu, James Q. Dinh