Patents by Inventor Xingcheng Xiao

Xingcheng Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210234153
    Abstract: A method of making an electrode material for an electrode in an electrochemical cell that cycles lithium ions is provided, where a protective coating is applied to an electrode precursor material. The electrode precursor may be a silicon-containing composition. The protective coating is selected from the group consisting of: an oxide-based coating, a fluoride-based coating, and a nitride-based coating. The method also includes lithiating the electrode precursor material in a continuous process. The continuous process is conducted in a reactor having a first reaction chamber and a second reaction chamber to form a lithiated electrode material comprising the protective coating.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 29, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Xingyi YANG, Raghunathan K, Mark W. VERBRUGGE
  • Patent number: 11075371
    Abstract: A negative electrode for an electrochemical cell of a secondary lithium metal battery may comprise a metal substrate, a lithium metal layer overlying a major surface of the metal substrate, and a protective interfacial layer formed on a major surface of the lithium metal layer over the metal substrate. The protective interfacial layer may comprise a stack of monomolecular layers including at least one aryl siloxane monomolecular layer overlying the major surface of the lithium metal layer. The protective interfacial layer may be formed on the major surface of the lithium metal layer by applying a mixture of monoaryl silanes to the major surface of the lithium metal layer.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 27, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Binsong Li, Xingcheng Xiao
  • Patent number: 11063248
    Abstract: Methods of removing a passivation layer on a lithium-containing electrode and preparing a protective coating on the lithium-containing electrode by applying a graphene source are provided herein. A lithium-containing electrode with the protective coating including graphene and lithium-containing electrochemical cells including the same are also provided herein.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: July 13, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Mei Cai
  • Publication number: 20210159493
    Abstract: An electrode including an electrode active material and a mesoporous film coating at least a portion of the electrode active material is provided. The mesoporous film coats at least a portion of the electrode active material and includes M2SiO3, MAlO2, M2O—Al2O3—SiO2, or combinations thereof, where M is lithium (Li), sodium (Na), or a combination thereof. Methods of fabricating the electrode are also provided.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Jin LIU
  • Publication number: 20210151787
    Abstract: Lithiated electrodes, electrochemical cells including lithiated electrodes, and methods of making the same are provided. The method includes lithiating at least one electrode in an electrochemical cell by applying current across a first current collector of the at least one electrode to a second current collector of an auxiliary electrode. The electrochemical cell may be disposed within a battery packaging and the auxiliary electrode may be disposed within the battery packaging adjacent to an edge of the electrochemical cell. The at least one electrode may include a first electroactive layer disposed on or near one or more surfaces of the first current collector, and the auxiliary electrode may include a second electroactive layer disposed at or near one or more surfaces of the second current collector. The method may further include extracting the auxiliary electrode from the battery packaging and sealing the battery packaging, which includes the pre-lithiated electrochemical cell.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 20, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Xingyi YANG, Mark W. VERBRUGGE, Raghunathan K, Qinglin ZHANG
  • Publication number: 20210135193
    Abstract: Methods of making negative electrode materials for an electrochemical cell that cycles lithium ions are provided. A surface of the electrode material formed of silicon, silicon-containing alloys, tin-containing alloys, or combinations thereof is treated with an oxidant at a first temperature of greater than or equal to about 100° C. to form a continuous intermediate layer comprising oxides. The method also includes pyrolyzing a carbon-containing precursor over the continuous intermediate layer at a second temperature of greater than or equal to about 600° C. to form a continuous carbon coating thereon. The intermediate layer oxides may be transformed to carbides. The continuous carbon coating comprises both graphitic carbon and amorphous carbon and may be a multilayered coating, where the inner layer predominantly includes amorphous carbon and the outer layer predominantly includes graphitic carbon.
    Type: Application
    Filed: October 30, 2019
    Publication date: May 6, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei WANG, Xingcheng XIAO, Wei LI, Mark W. VERBRUGGE, Michael P. BALOGH
  • Publication number: 20210135230
    Abstract: Methods of making a solid-state electrochemical cell that cycles lithium ions are provided that include applying a liquid metal composition comprising gallium to a first major surface of either a solid-state electrolyte or a solid electrode (e.g., lithium metal) in the presence of an oxidant and in an environment substantially free of water to reduce surface tension of the liquid metal composition so that it forms a continuous layer over the first major surface. The first major surface having the continuous layer of liquid metal composition is contacted with a second major surface to form a continuous interfacial layer between the solid-state electrolyte and the solid electrode. Solid-state electrochemical cells formed by such methods are also provided, where the metal composition comprising gallium is a liquid in a temperature range of greater than or equal to about 20° C. to less than or equal to about 30° C.
    Type: Application
    Filed: October 30, 2019
    Publication date: May 6, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jiagang XU, Xingcheng XIAO, Robert D. SCHMIDT
  • Patent number: 10991946
    Abstract: An electroactive material for use in an electrochemical cell, like a lithium ion battery, is provided. The electroactive material comprises silicon or tin and undergoes substantial expansion during operation of a lithium ion battery. A polymeric ultrathin conformal coating is formed over a surface of the electroactive material. The coating is flexible and is capable of reversibly elongating by at least 250% from a contracted state to an expanded state in at least one direction to minimize or prevent fracturing of the negative electrode material during lithium ion cycling. The coating may be applied by vapor precursors reacting in atomic layer deposition (ALD) to form conformal ultrathin layers over the electroactive materials. Methods for making such materials and using such materials in electrochemical cells are likewise provided.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: April 27, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Xiaosong Huang
  • Patent number: 10985363
    Abstract: A method of manufacturing a silicon-carbon composite electrode assembly for an electrochemical cell includes forming an electrode by pyrolyzing at least a portion of a polymer in an assembly to form pyrolyzed carbon. The assembly includes an electrode precursor in electrical contact with a current collector. The electrode precursor includes a polymer and an electroactive material. The electroactive material includes silicon. The current collector includes an electrically-conductive material. The pyrolyzing includes directing an energy stream toward a surface of the electrode precursor. The surface is disposed opposite the current collector. The silicon-carbon composite electrode assembly includes the electrode and the current collector. In certain variations, the energy stream includes a laser beam or a plasma jet. In certain aspects, the electrode defines a concentration gradient between a first surface and a second surface.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: April 20, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Hongliang Wang, Mark W. Verbrugge
  • Publication number: 20210111407
    Abstract: An electrode including an electrode active material including lithium (Li) and a polymer layer coating at least a portion of the electrode active material is provided. The polymer layer includes a polymerization product of a monomer having Formula I: where R1 and R2 are independently an aryl or a branched or unbranched C1-C10 alkyl and X1 and X2 are independently chlorine (Cl), bromine (Br), or iodine (I).
    Type: Application
    Filed: October 11, 2019
    Publication date: April 15, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Binsong LI, Xingcheng XIAO
  • Publication number: 20210083294
    Abstract: An electrode including an electrode active material and a ceramic hydrofluoric acid (HF) scavenger is provided. The ceramic hydrofluoric acid (HF) scavenger includes M2SiO3, MAlO2, M2O—Al2O3—SiO2, or combinations thereof, where M is lithium (Li), sodium (Na), or combinations thereof. Methods of making the electrode are also provided.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Jin LIU, Jiagang XU, Mei CAI, Sherman H. ZENG
  • Publication number: 20210083249
    Abstract: A method of modifying a carbonate layer formed on a surface of an electrochemical cell component is provided. The surface includes a ceramic oxide. The carbonate layer includes a carbonate and is substantially non-conductive to lithium ions and sodium ions. The method includes contacting the carbonate layer with a modifying agent to form a mixture and causing the modifying agent to incorporate into the carbonate layer and form a modified hybrid layer including a eutectic mixture of the modifying agent and the carbonate. The modified hybrid layer is conductive to lithium ions and sodium ions.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 18, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Robert D. SCHMIDT
  • Patent number: 10950846
    Abstract: Methods of forming a plurality of axial geometry carbon structures (e.g., carbon nanotubes or carbon fibers) in situ in an electrode of an electrochemical cell that cycles lithium ions are provided. Electroactive particles that undergo volumetric expansion are mixed with a polymer precursor and a plurality of catalytic nanoparticles comprising a metal selected from the group consisting of: iron, nickel, cobalt, alloys, and combinations thereof to form a substantially homogeneous slurry. The slurry is applied to a substrate and then heated in an environment having a temperature of ?about 1000° C. and in certain aspects, ?about 895° C. to pyrolyze the polymer precursor. The plurality of catalytic nanoparticles facilitates in situ precipitation of carbon to grow a plurality of axial geometry carbon structures. After the heating, the electrode includes an electrically conductive carbonaceous porous network comprising the plurality of electroactive particles and the plurality of axial geometry carbon structures.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: March 16, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Mark W. Verbrugge
  • Patent number: 10950836
    Abstract: A porous separator for a lithium-containing electrochemical cell is provided herein. The porous separator includes a porous substrate and an active layer comprising lithium ion-exchanged zeolite particles. Methods of manufacturing the porous separator and lithium-containing electrochemical cells including the porous separator are also provided herein.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: March 16, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Mei Cai, Gongshin Qi
  • Publication number: 20210066704
    Abstract: The present disclosure provides methods of compensation for capacity loss resulting from cycle-induced lithium consumption in an electrochemical cell including at least one electrode. Such methods may include adding a lithiation additive to the at least one electrode so as to create a lithium source. The lithium source compensates for cycle-induced lithiation loss such that the electrochemical cell having the lithiation additive experiences total capacity losses of less than or equal to about 5% of an initial capacity prior to cycling of lithium. The lithiation additive includes a lithium silicate represented by the formula LiuHr, where Hr=Liy-uSiOz and where 0?y?3.75 and 0?z?2 and u is a useable portion of y, 0?u?y. The lithium source may include z/4 Li4SiO4 and LimSi, where 0?m?4.4.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 4, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mark W. VERBRUGGE, Xingcheng XIAO, Jiagang XU
  • Patent number: 10919026
    Abstract: Methods for preparing a catalyst system, include providing a catalytic substrate comprising a catalyst support having a surface with a plurality of metal catalytic nanoparticles bound thereto and physically mixing and/or electrostatically combining the catalytic substrate with a plurality of oxide coating nanoparticles to provide a coating of oxide coating nanoparticles on the surface of the catalytic nanoparticles. The metal catalytic nanoparticles can be one or more of ruthenium, rhodium, palladium, osmium, iridium, and platinum, rhenium, copper, silver, and gold. Physically combining can include combining via ball milling, blending, acoustic mixing, or theta composition, and the oxide coating nanoparticles can include one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, barium, lanthanum, iron, strontium, and calcium. The catalyst support can include one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, barium, iron, strontium, and calcium.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: February 16, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Ming Yang, Gongshin Qi, Wei Li
  • Patent number: 10903478
    Abstract: A lithium-containing electrode with a protective coating and lithium-containing electrochemical cells including the same are provided herein. The protective coating has a first layer including a first fluoropolymeric matrix and Li—F compounds and a second layer including a second fluoropolymeric matrix. Methods of preparing the protective coating on the lithium-containing electrode by applying a first fluoropolymer and/or a first fluoropolymer precursor and a second fluoropolymer and/or a second fluoropolymer precursor are also provided herein.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: January 26, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Xingcheng Xiao
  • Patent number: 10901042
    Abstract: A method for determining a state of charge (SOC) of a rechargeable battery cell includes determining a rate-invariant charge/discharge relationship between an open-circuit voltage (OCV) and a state of charge (SOC). This includes a first finite-rate voltage scan following a reduction branch of a relationship between OCV and the SOC, and executing a second finite-rate voltage scan following an oxidation branch of a relationship between OCV and the SOC. A rate-dependent charge/discharge relationship between the OCV and the SOC is determined during scanned voltage transitions between the reduction and oxidation branches. A present SOC state is determined based upon an electrical potential, the rate-invariant charge/discharge relationship between the OCV and the SOC, and the rate-dependent charge/discharge relationship between the OCV and the SOC during a voltage-scan reversal that occurs when the scanned voltage transitions between the reduction and oxidation branches.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: January 26, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark W. Verbrugge, Daniel R. Baker, Xingcheng Xiao
  • Patent number: 10903491
    Abstract: A rechargeable lithium-ion battery disclosed herein comprises a positive electrode with a positive electroactive material that in a charged state comprises lithium iron (II) orthosilicate (Li2FeSiO4) and in a discharged state comprises FeSiO4 or LiFeSiO4. A negative electrode comprises phosphorene. A separator is disposed between the positive electrode and the negative electrode. An electrolyte has an organic solvent especially containing ether-based organic solvents and a lithium salt that provides a conductive medium for lithium ions to transfer between the positive electrode and the negative electrode. Such a rechargeable lithium-ion battery provides advantageous power delivery, long driving ranges, and fast charge to enhance widespread use of batteries, especially in vehicles. Furthermore, lithium plating can be minimized or avoided, even at low temperature charging. Methods of recharging a rechargeable lithium-ion battery at low temperatures are also disclosed.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: January 26, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Li Yang, Gayatri V. Dadheech, Gongshin Qi, Mark W. Verbrugge, Sherman H. Zeng
  • Publication number: 20210020912
    Abstract: A negative electrode according to various aspects of the present disclosure includes a negative electroactive material and a layer. The negative electroactive material includes a lithium-aluminum alloy. The layer is disposed directly on at least a portion of the negative electroactive material and coupled to the negative electroactive material. The layer includes anodic aluminum oxide and has a plurality of pores. The present disclosure also provides an electrochemical cell including the negative electrode. In certain aspects, the negative electroactive material is electrically conductive and functions as a negative electrode current collector such that the electrochemical cell is free of a distinct negative electrode current collector component. In certain aspects, the layer is ionically conductive and electrically insulating and functions as a separator such that the electrochemical cell is free of a distinct separator component.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 21, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Jin LIU, Mei CAI, Meinan HE, Hongliang WANG