Patents by Inventor Xingcheng Xiao

Xingcheng Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210066704
    Abstract: The present disclosure provides methods of compensation for capacity loss resulting from cycle-induced lithium consumption in an electrochemical cell including at least one electrode. Such methods may include adding a lithiation additive to the at least one electrode so as to create a lithium source. The lithium source compensates for cycle-induced lithiation loss such that the electrochemical cell having the lithiation additive experiences total capacity losses of less than or equal to about 5% of an initial capacity prior to cycling of lithium. The lithiation additive includes a lithium silicate represented by the formula LiuHr, where Hr=Liy-uSiOz and where 0?y?3.75 and 0?z?2 and u is a useable portion of y, 0?u?y. The lithium source may include z/4 Li4SiO4 and LimSi, where 0?m?4.4.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 4, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mark W. VERBRUGGE, Xingcheng XIAO, Jiagang XU
  • Patent number: 10919026
    Abstract: Methods for preparing a catalyst system, include providing a catalytic substrate comprising a catalyst support having a surface with a plurality of metal catalytic nanoparticles bound thereto and physically mixing and/or electrostatically combining the catalytic substrate with a plurality of oxide coating nanoparticles to provide a coating of oxide coating nanoparticles on the surface of the catalytic nanoparticles. The metal catalytic nanoparticles can be one or more of ruthenium, rhodium, palladium, osmium, iridium, and platinum, rhenium, copper, silver, and gold. Physically combining can include combining via ball milling, blending, acoustic mixing, or theta composition, and the oxide coating nanoparticles can include one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, barium, lanthanum, iron, strontium, and calcium. The catalyst support can include one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, barium, iron, strontium, and calcium.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: February 16, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Ming Yang, Gongshin Qi, Wei Li
  • Patent number: 10903478
    Abstract: A lithium-containing electrode with a protective coating and lithium-containing electrochemical cells including the same are provided herein. The protective coating has a first layer including a first fluoropolymeric matrix and Li—F compounds and a second layer including a second fluoropolymeric matrix. Methods of preparing the protective coating on the lithium-containing electrode by applying a first fluoropolymer and/or a first fluoropolymer precursor and a second fluoropolymer and/or a second fluoropolymer precursor are also provided herein.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: January 26, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Xingcheng Xiao
  • Patent number: 10903491
    Abstract: A rechargeable lithium-ion battery disclosed herein comprises a positive electrode with a positive electroactive material that in a charged state comprises lithium iron (II) orthosilicate (Li2FeSiO4) and in a discharged state comprises FeSiO4 or LiFeSiO4. A negative electrode comprises phosphorene. A separator is disposed between the positive electrode and the negative electrode. An electrolyte has an organic solvent especially containing ether-based organic solvents and a lithium salt that provides a conductive medium for lithium ions to transfer between the positive electrode and the negative electrode. Such a rechargeable lithium-ion battery provides advantageous power delivery, long driving ranges, and fast charge to enhance widespread use of batteries, especially in vehicles. Furthermore, lithium plating can be minimized or avoided, even at low temperature charging. Methods of recharging a rechargeable lithium-ion battery at low temperatures are also disclosed.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: January 26, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Li Yang, Gayatri V. Dadheech, Gongshin Qi, Mark W. Verbrugge, Sherman H. Zeng
  • Patent number: 10901042
    Abstract: A method for determining a state of charge (SOC) of a rechargeable battery cell includes determining a rate-invariant charge/discharge relationship between an open-circuit voltage (OCV) and a state of charge (SOC). This includes a first finite-rate voltage scan following a reduction branch of a relationship between OCV and the SOC, and executing a second finite-rate voltage scan following an oxidation branch of a relationship between OCV and the SOC. A rate-dependent charge/discharge relationship between the OCV and the SOC is determined during scanned voltage transitions between the reduction and oxidation branches. A present SOC state is determined based upon an electrical potential, the rate-invariant charge/discharge relationship between the OCV and the SOC, and the rate-dependent charge/discharge relationship between the OCV and the SOC during a voltage-scan reversal that occurs when the scanned voltage transitions between the reduction and oxidation branches.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: January 26, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark W. Verbrugge, Daniel R. Baker, Xingcheng Xiao
  • Publication number: 20210020912
    Abstract: A negative electrode according to various aspects of the present disclosure includes a negative electroactive material and a layer. The negative electroactive material includes a lithium-aluminum alloy. The layer is disposed directly on at least a portion of the negative electroactive material and coupled to the negative electroactive material. The layer includes anodic aluminum oxide and has a plurality of pores. The present disclosure also provides an electrochemical cell including the negative electrode. In certain aspects, the negative electroactive material is electrically conductive and functions as a negative electrode current collector such that the electrochemical cell is free of a distinct negative electrode current collector component. In certain aspects, the layer is ionically conductive and electrically insulating and functions as a separator such that the electrochemical cell is free of a distinct separator component.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 21, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Jin LIU, Mei CAI, Meinan HE, Hongliang WANG
  • Patent number: 10892671
    Abstract: Methods of manufacturing electrically conductive copper components for electric devices and method of joining electrically conductive copper components are provided. Each of the electrically conductive copper components are manufactured to include a preexisting coating of joining material located on or adjacent to a joining surface thereof.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: January 12, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Hongliang Wang, Chen Zhou, Xingcheng Xiao
  • Publication number: 20200403204
    Abstract: A ceramic-coated separator for a lithium-containing electrochemical cell and methods of preparing the ceramic-coated separator are provided. The ceramic-coated separator may be manufactured by preparing a slurry that includes one or more lithiated oxides and a binder and disposing the slurry onto one or more surfaces of a porous substrate. The slurry may be dried to from a ceramic coating on the one or more surfaces of the porous substrate so as to create the ceramic-coated separator. The ceramic coating may include one or more lithiated oxides selected from Li2SiO3, LiAlO2, Li2TiO3, LiNbO3, Li3PO4, Li2CrO4, and Li2Cr2O7.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Jiagang XU, Mei CAI
  • Publication number: 20200321617
    Abstract: Electrodes include a lithium-based host material with a solid electrolyte interface (SEI) layer including a polymer matrix including fluoropolymers, and LiF imbedded within the matrix. The SEI layer comprises about 5 wt. % to about 75 wt. % LiF. The LiF can be present within the polymer matrix as nanocrystals with an average diameter of about 5-500 nm. The one or more fluoropolymers can include and/or are the defluorination products of one or more of fluorinated ethylene propylene, perfluoroalkoxy alkanes, vinylidenefluoride, and copolymers of perfluoromethylvinylether and tetrafluoroethylene. The —CF3 functional groups of the one or more defluorinated fluoropolymers can be at least about 3 wt. % of the SEI layer. The lithium-based host material can include at least 50 wt. % lithium. The lithium-based host material can include a lithium-aluminum alloy, a lithium-silicon alloy, a lithium-tin alloy, a lithium-zinc alloy, or a lithium-germanium alloy.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 8, 2020
    Inventor: Xingcheng Xiao
  • Publication number: 20200321603
    Abstract: Methods for manufacturing electrodes include applying a fluoropolymer film to a lithium-based host material, defluorinating the fluoropolymer film by heating to produce a lithium electrode having a solid electrolyte interface (SEI) layer including defluorinated fluoropolymers and at least about 5 wt. % LiF. The fluoropolymers can include one or more of fluorinated ethylenepropylene, perfluoroalkoxy alkanes, vinylidenefluoride, and copolymers of perfluoromethylvinylether and tetrafluoroethylene. The fluoropolymers can include one or more fluorinated monomers, including hexafluoropropylene, tetrafluoroethylene, ethylene-tetrafluoroethylene, perfluoroethers, and vinylidene fluoride. The —CF3 functional groups of the defluorinated fluoropolymers can be about 3 wt. % to about 10 wt. % of the SEI layer. The SEI layer can include about 30 wt. % to about 50 wt. % LiF.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 8, 2020
    Inventor: Xingcheng Xiao
  • Patent number: 10753247
    Abstract: Bimetallic oxidation catalyst devices include a support body, one or more metal A bulk deposits disposed on the support body, and a plurality of metal B atomic clusters disposed on the surface of each of the metal A bulk deposits. Metal A and metal B are different metals each selected from the group consisting of platinum group metals (PGM), Ag, Au, Ni, Co, and Cu, and substantially no metal B is deposited on the support body. At least 85% by weight of the metal B atomic clusters comprise up to 10 atoms and the maximum metal B atomic cluster size is 200 metal B atoms. The combined loading of metal A and metal B can be less than 1.5% by weight relative to the weight of the support body. Metal A can include Pd, Rh, Rh, or Pd, and metal B can include Pt, Pt, Ag, or Ag.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: August 25, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ming Yang, Ryan J. Day, Xingcheng Xiao, Gongshin Qi, Wei Li
  • Publication number: 20200220153
    Abstract: Methods of forming a plurality of axial geometry carbon structures (e.g., carbon nanotubes or carbon fibers) in situ in an electrode of an electrochemical cell that cycles lithium ions are provided. Electroactive particles that undergo volumetric expansion are mixed with a polymer precursor and a plurality of catalytic nanoparticles comprising a metal selected from the group consisting of: iron, nickel, cobalt, alloys, and combinations thereof to form a substantially homogeneous slurry. The slurry is applied to a substrate and then heated in an environment having a temperature of ?about 1000° C. and in certain aspects, ?about 895° C. to pyrolyze the polymer precursor. The plurality of catalytic nanoparticles facilitates in situ precipitation of carbon to grow a plurality of axial geometry carbon structures. After the heating, the electrode includes an electrically conductive carbonaceous porous network comprising the plurality of electroactive particles and the plurality of axial geometry carbon structures.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Mark W. VERBRUGGE
  • Publication number: 20200220172
    Abstract: A rechargeable lithium-ion battery is provided that includes a positive electrode with a positive electroactive material that in a charged state includes lithium iron (II) orthosilicate (Li2FeSiO4) and in a discharged state includes FeSiO4 or LiFeSiO4. A negative electrode includes phosphorene. A separator is disposed between the positive and negative electrodes. An electrolyte has an organic solvent especially containing ether-based organic solvents and a lithium salt that provides a conductive medium for lithium ions to transfer between the positive electrode and the negative electrode. Such a rechargeable lithium-ion battery provides advantageous power delivery, long driving ranges, and fast charge to enhance widespread use of batteries, especially in vehicles. Furthermore, lithium plating can be minimized or avoided, even at low temperature charging. Methods of recharging a rechargeable lithium-ion battery at low temperatures are also provided.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 9, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Li YANG, Gayatri V. DADHEECH, Gongshin QI, Mark W. VERBRUGGE, Sherman H. ZENG
  • Publication number: 20200220154
    Abstract: A method of manufacturing a silicon-carbon composite electrode assembly for an electrochemical cell includes forming an electrode by pyrolyzing at least a portion of a polymer in an assembly to form pyrolyzed carbon. The assembly includes an electrode precursor in electrical contact with a current collector. The electrode precursor includes a polymer and an electroactive material. The electroactive material includes silicon. The current collector includes an electrically-conductive material. The pyrolyzing includes directing an energy stream toward a surface of the electrode precursor. The surface is disposed opposite the current collector. The silicon-carbon composite electrode assembly includes the electrode and the current collector. In certain variations, the energy stream includes a laser beam or a plasma jet. In certain aspects, the electrode defines a concentration gradient between a first surface and a second surface.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Hongliang WANG, Mark W. VERBRUGGE
  • Publication number: 20200220234
    Abstract: A lithium ion battery is provided that includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. One or more of the separator, positive electrode, and negative electrode includes a transition metal compound capable of catalyzing any gaseous reactants formed in the lithium ion battery to form a liquid. The transition metal compound may include ruthenium (Ru). In certain variations, the lithium ion battery includes an electrolyte that is a conductive medium for lithium ions to move between the positive electrode and the negative electrode. The electrolyte comprises a transition metal compound capable of catalyzing a reaction of any gaseous reactants to form a liquid.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 9, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gayatri V. DADHEECH, Li YANG, Xingcheng XIAO, Gongshin QI, Vijay P. SAHARAN
  • Publication number: 20200212446
    Abstract: Double-layered protective coatings for lithium metal electrodes, as well as methods of formation relating thereto, are provided. The negative electrode assembly includes an electroactive material layer including lithium metal and a protective dual-layered coating. The protective dual-layered coating includes a polymeric layer disposed on a surface of the electroactive material layer and an inorganic layer disposed on an exposed surface of the polymeric layer. The polymeric layer has an elastic modulus of greater than or equal to about 0.01 GPa to less than or equal to about 410 GPa. The inorganic layer has an elastic modulus of greater than or equal to about 10 GPa to less than or equal to about 1000 GPa.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Xingcheng XIAO, Binsong LI, Huajian GAO, Kai GUO
  • Patent number: 10695749
    Abstract: Sinter-resistant catalyst systems include a catalytic substrate comprising a plurality of metal catalytic nanoparticles bound to a metal oxide catalyst support, and a coating of oxide nanoparticles disposed on the metal catalytic nanoparticles and optionally on the metal oxide support. The oxide nanoparticles comprise one or more lanthanum oxides and optionally one or more barium oxides, and additionally one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, iron, strontium, and calcium. The metal catalytic nanoparticles can include ruthenium, rhodium, palladium, osmium, iridium, and platinum, rhenium, copper, silver, and/or gold. The metal oxide catalyst support can include one or more metal oxides selected from the group consisting of Al2O3, CeO2, ZrO2, TiO2, SiO2, La2O3, MgO, and ZnO. The coating of oxide nanoparticles is about 0.1% to about 50% lanthanum and barium oxides. The oxide nanoparticles can further include one or more oxides of magnesium and/or cobalt.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: June 30, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Ming Yang, Gongshin Qi, Wei Li
  • Publication number: 20200203710
    Abstract: A negative electrode for an electrochemical cell of a secondary lithium metal battery may comprise a metal substrate, a lithium metal layer overlying a major surface of the metal substrate, and a protective interfacial layer formed on a major surface of the lithium metal layer over the metal substrate. The protective interfacial layer may comprise a stack of monomolecular layers including at least one aryl siloxane monomolecular layer overlying the major surface of the lithium metal layer. The protective interfacial layer may be formed on the major surface of the lithium metal layer by applying a mixture of monoaryl silanes to the major surface of the lithium metal layer.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Binsong Li, Xingcheng Xiao
  • Publication number: 20200176755
    Abstract: Methods for pre-lithiating an anode include providing the anode having a host material comprising silicon particles or SiOx particles, disposing a first side of an electrically conductive pre-lithiating separator contiguous with the anode, and disposing a lithium source contiguous with a second side of the pre-lithiating separator such that lithium ions migrate to the host material via the pre-lithiating separator. The pre-lithiating separator comprises a porous body, one or more solvents, and one or more lithium ions. Method for manufacturing a battery cell, further include separating the pre-lithiating separator from the lithiated anode, and combining the lithiated anode with a battery separator and a lithium cathode to form a battery cell. The methods can further include applying a voltage to the anode and the lithium source, or maintaining a constant current between the lithium source and the anode while lithium ions migrate to the host material.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 4, 2020
    Inventors: Xiaosong Huang, Xingcheng Xiao, Li Yang, Hamid G. Kia
  • Patent number: 10637048
    Abstract: A silicon anode material for an electrochemical cell that cycles lithium and methods of formation relating thereto are provided. The silicon anode material comprises a plurality of carbon-encased silicon clusters, where each carbon-encased silicon cluster includes a volume of silicon nanoparticles encased in a carbon shell having an interior volume greater than the volume of the silicon nanoparticles. The method of making the silicon anode material includes forming a plurality of precursor clusters, where each precursor silicon-based cluster comprises a volume of SiOx nanoparticles (x?2). The method further includes carbon coating each of the precursor clusters to form a plurality of carbon-coated SiOx clusters; and reducing the SiOx nanoparticles in each of the carbon-coated SiOx clusters to form the silicon anode material.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: April 28, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gongshin Qi, Wei Li, Xingcheng Xiao