Patents by Inventor Xingcheng Xiao

Xingcheng Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10629949
    Abstract: Certain glass, glass-ceramic, and ceramic electrolyte bodies formed from lithium or sodium sulfides and glass-forming sulfides, sulfoxides and/or certain glass-forming oxides provide good conductivity of lithium ions or sodium ions for use in lithium metal electrode or sodium metal electrode battery cells. The stability of the lithium or sodium metal anode-glass electrolyte interface is improved by forming a metal oxide passivation layer by atomic layer deposition on the facing surface of the electrolyte and activating the coating by contact of the passivated surface with the lithium or sodium electrode material.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 21, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas A. Yersak, Xingcheng Xiao, James R. Salvador
  • Patent number: 10622621
    Abstract: A high performance electrode for an electrochemical cell including electroactive materials having a large charge capacity and that undergo substantial volumetric expansion and contraction during cycling of the electrochemical cell and a method for making the high performance electrode are provided. The electroactive material of the high performance electrode may have a thickness greater than or equal to about 1 ?m. Methods of forming the high performance electrodes includes patterning the electroactive material to form a plurality of void spaces using a high-speed process selected from the group consisting of: laser ablation, electron beam machining, ion beam milling, roll forming, embossing, lithography, and combinations thereof. The plurality of void spaces accommodates the volumetric expansion and contraction to minimize cracking and damage to the electrode during cycling of the electrochemical cell.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: April 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Hongliang Wang, Qinglin Zhang, Mark W. Verbrugge
  • Patent number: 10622627
    Abstract: In an example of a method for making a sulfur-based positive electrode active material, a carbon layer is formed on a sacrificial nanomaterial. The carbon layer is coated with titanium dioxide to form a titanium dioxide layer. The sacrificial nanomaterial is removed to form a hollow material including a hollow core surrounded by a carbon and titanium dioxide double shell. Sulfur is impregnated into the hollow core.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gayatri V. Dadheech, Xingcheng Xiao, Mei Cai
  • Patent number: 10612440
    Abstract: A component of an exhaust system is provided. The component includes a housing extending from an inlet at a first end to an outlet at an opposing second end, an electrically conductive material disposed within the housing, and an induction coil configured to emit a magnetic field. The magnetic field is operable to heat the electrically conductive material from a first temperature of greater than or equal to about ?20° C. to less than or equal to about 50° C. to a second temperature of greater than or equal to about 200° C. to less than or equal to about 700° C. in a time period of less than or equal to about 20 seconds.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: April 7, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei Wang, Gongshin Qi, Xingcheng Xiao, Wei Li
  • Patent number: 10615461
    Abstract: An electrochemical cell of a secondary lithium ion battery includes lithium ion-exchanged zeolite particles or “lithiated zeolite particles” positioned along at least a portion of a lithium ion transport path through the electrochemical cell. The lithiated zeolite particles may be positioned within the lithium ion transport path through the electrochemical cell, for example, by being distributed throughout an electrolyte disposed between confronting anterior surfaces of a negative electrode and a positive electrode. Additionally or alternatively, the lithiated zeolite particles may be positioned within the lithium ion transport path through the electrochemical cell by being distributed throughout or deposited as a coating layer on the negative electrode, the positive electrode, and/or a porous separator sandwiched between the confronting anterior surfaces of the negative and positive electrodes.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: April 7, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Sherman H. Zeng, Mei Cai, Mark W. Verbrugge
  • Patent number: 10596563
    Abstract: Methods of preparing a sinter-resistant catalyst include forming a dual coating system. A surface of a particulate catalyst support contacts a first liquid precursor including a metal salt with an element selected from the group consisting of: aluminum (Al), cerium (Ce), zirconium (Zr), titanium (Ti), silicon (Si), magnesium (Mg), zinc (Zn), and combinations thereof. The first liquid precursor precipitates or is adsorbed as an ion on a portion of the surface forming a first coating including a porous metal oxide on the surface. The surface may be contacted with a second liquid precursor including a metal oxide sol including a metal selected from the group consisting of: aluminum (Al), cerium (Ce), zirconium (Zr), iron (Fe), titanium (Ti), silicon (Si), and combinations thereof. A second coating is formed from the second liquid precursor on a portion of the surface to create the sinter-resistant catalyst system.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: March 24, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gongshin Qi, Ming Yang, Ryan J. Day, Xingcheng Xiao, Wei Li
  • Patent number: 10593988
    Abstract: An electrochemical cell is formed. The cell includes a non-lithium negative electrode in contact with a lithium ion permeable negative electrode current collector, and a positive electrode disposed in contact with a lithium ion permeable positive electrode current collector. The non-lithium negative electrode and the positive electrode are lithium ion permeable. The cell also has a lithium source electrode including lithium ions. A respective microporous polymer separator is disposed between the lithium source electrode and each of the negative and positive electrodes; or a first separator is disposed between the lithium source electrode and one of the negative and positive electrodes, and a second separator is disposed between the negative and positive electrodes. An electrolyte is introduced into the electrochemical cell.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: March 17, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, John S. Wang
  • Publication number: 20200070269
    Abstract: A method of forming a layer on a first component according to various aspects of the present disclosure includes melting a portion of a first metallic composition of the first component. The melting includes directing a laser beam toward a first surface of the first component. The method further includes depositing a second metallic composition on the first surface by directing a precursor including the second metallic composition toward an intersection of the first surface and the laser beam. The second metallic composition is galvanically more noble than the first metallic composition. The method further includes forming the layer on the first component by solidifying the first metallic composition and the second metallic composition. The first component is configured to be joined to a second component by engaging a plurality of micro-anchors defined on the layer with a polymer of the second component.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 5, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hongliang WANG, Xingcheng XIAO, Guoxian XIAO, Hua-Tzu FAN, Jorge F. ARINEZ
  • Publication number: 20200064520
    Abstract: Systems, methods and devices to inhibit sensing reduction in imperfect sensing conditions are described. A multifunctional coating superposing a lens includes a self-cleaning layer and a heating layer. The self-cleaning layer defines an external surface configured to be exposed to an exterior environment. The external surface defines three-dimensional surface features thereon. The three-dimensional surface features are adjacently disposed arcuate features that inhibit adhering of solid particles to the external surface and wetting of the external surface. The heating layer is in thermal communication with the external surface. The heating layer is selectively actuated to provide thermal energy to the external surface through resistive heating. Each of the self-cleaning layer and the heating layer is transparent to a predetermined wavelength of light.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 27, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Xingcheng Xiao, Xiaosong Huang, Jinsong Wang, Qingrong Zhao
  • Patent number: 10573879
    Abstract: In an example of a method for enhancing the performance of a silicon-based negative electrode, the silicon-based negative electrode is pre-lithiated in an electrolyte including a lithium salt dissolved in a solvent mixture of dimethoxyethane (DME) and fluoroethylene carbonate (FEC). The DME and FEC are present in a volume to volume ratio ranging from 10 to 1 to 1 to 10. The pre-lithiation forms a stable solid electrolyte interface layer on an exposed surface of the negative electrode.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: February 25, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Li Yang, Qiangfeng Xiao, Mei Cai, Meng Jiang, Xingcheng Xiao
  • Patent number: 10562017
    Abstract: Catalysts that are resistant to high-temperature sintering and methods for preparing such catalysts that are resistant to sintering at high temperatures are provided. The catalyst may be prepared by contacting a solution comprising an ionic species with one or more charged surface regions of a catalyst support. A surface of the catalyst support further includes one or more catalyst particles disposed adjacent to the one or more charged surface regions. The ionic species has a first charge opposite to a second charge of the one or more charged surface regions. Next, the ionic species is associated with the one or more charged surface regions to form a layer on the one or more select surface regions. The layer is calcined to generate a coating comprising metal oxide on the one or more select surface regions, where the coating is formed adjacent to the one or more catalyst particles.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: February 18, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ming Yang, Gongshin Qi, Ryan J. Day, Xingcheng Xiao, Wei Li
  • Publication number: 20200047160
    Abstract: Methods for preparing a catalyst system, include providing a catalytic substrate comprising a catalyst support having a surface with a plurality of metal catalytic nanoparticles bound thereto and physically mixing and/or electrostatically combining the catalytic substrate with a plurality of oxide coating nanoparticles to provide a coating of oxide coating nanoparticles on the surface of the catalytic nanoparticles. The metal catalytic nanoparticles can be one or more of ruthenium, rhodium, palladium, osmium, iridium, and platinum, rhenium, copper, silver, and gold. Physically combining can include combining via ball milling, blending, acoustic mixing, or theta composition, and the oxide coating nanoparticles can include one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, barium, lanthanum, iron, strontium, and calcium. The catalyst support can include one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, barium, iron, strontium, and calcium.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Inventors: Xingcheng Xiao, Ming Yang, Gongshin Qi, Wei Li
  • Publication number: 20200047159
    Abstract: Sinter-resistant catalyst systems include a catalytic substrate comprising a plurality of metal catalytic nanoparticles bound to a metal oxide catalyst support, and a coating of oxide nanoparticles disposed on the metal catalytic nanoparticles and optionally on the metal oxide support. The oxide nanoparticles comprise one or more lanthanum oxides and optionally one or more barium oxides, and additionally one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, iron, strontium, and calcium. The metal catalytic nanoparticles can include ruthenium, rhodium, palladium, osmium, iridium, and platinum, rhenium, copper, silver, and/or gold. The metal oxide catalyst support can include one or more metal oxides selected from the group consisting of Al2O3, CeO2, ZrO2, TiO2, SiO2, La2O3, MgO, and ZnO. The coating of oxide nanoparticles is about 0.1% to about 50% lanthanum and barium oxides. The oxide nanoparticles can further include one or more oxides of magnesium and/or cobalt.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Inventors: Xingcheng Xiao, Ming Yang, Gongshin Qi, Wei Li
  • Publication number: 20190372108
    Abstract: A silicon anode material for an electrochemical cell that cycles lithium and methods of formation relating thereto are provided. The silicon anode material comprises a plurality of carbon-encased silicon clusters, where each carbon-encased silicon cluster includes a volume of silicon nanoparticles encased in a carbon shell having an interior volume greater than the volume of the silicon nanoparticles. The method of making the silicon anode material includes forming a plurality of precursor clusters, where each precursor silicon-based cluster comprises a volume of SiOx nanoparticles (x?2). The method further includes carbon coating each of the precursor clusters to form a plurality of carbon-coated SiOx clusters; and reducing the SiOx nanoparticles in each of the carbon-coated SiOx clusters to form the silicon anode material.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gongshin QI, Wei LI, Xingcheng XIAO
  • Patent number: 10497927
    Abstract: A method of making a negative electrode for an electrochemical cell includes applying a fluoropolymer via a deposition process to one or more surface regions of an electroactive material. The electroactive material may be selected from the group consisting of: lithium metal, silicon metal, silicon-containing alloys, and combinations thereof. The fluoropolymer reacts with lithium to form a composite surface layer on the one or more surface regions that comprises an organic matrix material having lithium fluoride particles distributed therein. Electrochemical cells including such negative electrode are also provided.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: December 3, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Xingcheng Xiao
  • Publication number: 20190363345
    Abstract: Methods of removing a passivation layer on a lithium-containing electrode and preparing a protective coating on the lithium-containing electrode by applying a graphene source are provided herein. A lithium-containing electrode with the protective coating including graphene and lithium-containing electrochemical cells including the same are also provided herein.
    Type: Application
    Filed: May 24, 2018
    Publication date: November 28, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Mei CAI
  • Patent number: 10483592
    Abstract: A method of manufacturing a lithium ion battery cell. A non-aqueous liquid electrolyte solution is placed in contact with particles of a lithium ion-exchanged zeolite material for a time sufficient to remove water molecules from the liquid electrolyte solution. Thereafter, the liquid electrolyte solution may be introduced into an electrochemical cell assembly and hermetically sealed within a cell casing to form a lithium ion battery cell.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: November 19, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Xingcheng Xiao, Mark W. Verbrugge, Mei Cai, Sherman H. Zeng
  • Patent number: 10476074
    Abstract: Methods for making electroactive composite materials for electrochemical cells are provided. The method includes introducing a particle mixture comprising a first particle having a first diameter (R1) and comprising a first electroactive material and a second particle having a second diameter (R2) smaller than the first diameter (R1) and comprising a second electroactive material into a dry-coating device having a rotatable vessel defining a cavity and a rotor disposed therewithin. The vessel is rotated at a first speed in a first direction, and the rotor is rotated at a second speed greater than the first speed in a second direction opposing the first direction. The particle mixture flows between cavity walls and the rotor and experiences thrusting and compression forces that create a substantially uniform coating comprising the second electroactive material on one or more exposed surfaces of the first particle.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: November 12, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Jingmei Shen, Mei Cai, Martin S. Ruthkosky
  • Publication number: 20190341615
    Abstract: An electroactive material for use in an electrochemical cell, like a lithium ion battery, is provided. The electroactive material comprises silicon or tin and undergoes substantial expansion during operation of a lithium ion battery. A polymeric ultrathin conformal coating is formed over a surface of the electroactive material. The coating is flexible and is capable of reversibly elongating by at least 250% from a contracted state to an expanded state in at least one direction to minimize or prevent fracturing of the negative electrode material during lithium ion cycling. The coating may be applied by vapor precursors reacting in atomic layer deposition (ALD) to form conformal ultrathin layers over the electroactive materials. Methods for making such materials and using such materials in electrochemical cells are likewise provided.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Xiaosong HUANG
  • Publication number: 20190314804
    Abstract: Catalyst systems that are resistant to high-temperature sintering and methods for preparing such catalyst systems that are resistant to sintering at high temperatures are provided. Methods of forming such catalyst systems include contacting a support having a surface including a catalyst particle with a solution comprising a metal salt and having an acidic pH. The metal salt is precipitated onto the surface of the support. Next, the metal salt is calcined to selectively generate a porous coating of metal oxide on the surface of the support distributed around the catalyst particle.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 17, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Gongshin QI, Ryan J. DAY, Ming YANG