Patents by Inventor Xingtian Shu

Xingtian Shu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200339433
    Abstract: The present invention relates to a molecular sieve, particularly to an ultra-macroporous molecular sieve. The present invention also relates to a process for the preparation of the molecular sieve and to its application as an adsorbent, a catalyst, or the like. The molecular sieve has a unique X-ray diffraction pattern and a unique crystal particle morphology. The molecular sieve can be produced by using a compound represented by the following formula (I), wherein the definition of each group and value is the same as that provided in the specification, as an organic template. The molecular sieve is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorptive/catalytic properties.
    Type: Application
    Filed: July 11, 2020
    Publication date: October 29, 2020
    Inventors: Yongrui WANG, Jincheng ZHU, Mingyi SUN, Xuhong MU, Xingtian SHU
  • Patent number: 10737945
    Abstract: The present invention relates to a molecular sieve, particularly to an ultra-macroporous molecular sieve. The present invention also relates to a process for the preparation of the molecular sieve and to its application as an adsorbent, a catalyst, or the like. The molecular sieve has a unique X-ray diffraction pattern and a unique crystal particle morphology. The molecular sieve can be produced by using a compound represented by the following formula (I), wherein the definition of each group and value is the same as that provided in the specification, as an organic template. The molecular sieve is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorptive/catalytic properties.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: August 11, 2020
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yongrui Wang, Jincheng Zhu, Mingyi Sun, Xuhong Mu, Xingtian Shu
  • Patent number: 10518219
    Abstract: A process for ion-exchanging an exchangeable-ion containing solid material, characterized in that said process include a bipolar membrane electrodialysis step, which comprises subjecting an aqueous ion-containing solution to a bipolar membrane electrodialysis to produce an acid liquid; an ion-exchange step, which comprises contacting the exchangeable-ion containing solid material with the acid liquid and conducting the ion-exchange to produce a slurry containing the ion-exchanged solid material; a solid-liquid separation step, which comprises subjecting the slurry containing the ion-exchanged solid material to a solid-liquid separation to produce a solid phase and a liquid phase, adjusting the liquid phase to a pH of 4-6.5, and subjecting the pH-adjusted liquid phase to a solid-liquid separation to produce a treatment liquid. Oxalic acid is used in at least one of the bipolar membrane electrodialysis step, the ion-exchange step, and the solid-liquid separation step.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: December 31, 2019
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Zhongqing Liu, Lina Zhou, Yibin Luo, Xingtian Shu
  • Publication number: 20190233749
    Abstract: The present application relates to a process for treating gasoline, comprising the steps of: contacting a gasoline feedstock with a mixed catalyst and subjecting it to desulfurization and aromatization in the presence of hydrogen to obtain a desulfurization-aromatization product; optionally, splitting the resulting desulfurization-aromatization product into a light gasoline fraction and a heavy gasoline fraction; and, optionally, subjecting the resulting light gasoline fraction to etherification to obtain an etherified oil; wherein the mixed catalyst comprises an adsorption desulfurization catalyst and an aromatization catalyst. The process of the present application is capable of reducing the sulfur and olefin content of gasoline and at the same time increasing the octane number of the gasoline while maintaining a high yield of gasoline.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 1, 2019
    Inventors: Youhao XU, Yibin LUO, Xin WANG, Ying OUYANG, Zhijian DA, Xingtian SHU, Xieqing WANG
  • Publication number: 20190144289
    Abstract: The present invention relates to a molecular sieve, particularly to an ultra-macroporous molecular sieve. The present invention also relates to a process for the preparation of the molecular sieve and to its application as an adsorbent, a catalyst, or the like. The molecular sieve has a unique X-ray diffraction pattern and a unique crystal particle morphology. The molecular sieve can be produced by using a compound represented by the following formula (I), wherein the definition of each group and value is the same as that provided in the specification, as an organic template. The molecular sieve is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorptive/catalytic properties.
    Type: Application
    Filed: April 26, 2017
    Publication date: May 16, 2019
    Inventors: Yongrui WANG, Jincheng ZHU, Mingyi SUN, Xuhong MU, Xingtian SHU
  • Publication number: 20190077780
    Abstract: Provided is a method for preparing an epoxide by halohydrination, the method comprising: (1) halohydrination: adding H2O, a halogen(s) and an olefin compound to a reaction device for reaction to obtain a halohydrin; (2) saponification: saponificating the halohydrin with an alkali metal hydroxide to obtain an epoxide and an alkali metal halide; (3) performing a bipolar membrane electrodialysis of the alkali metal halide to obtain an alkali metal hydroxide and a halogen hydride. Also provided is a method for preparing an epoxide by halohydrination, the method comprising: (1) halohydrination: halohydrinating a halogen hydride, an H2O2 and an olefin compound to obtain a halohydrin; optionally, (2) saponification: saponificating the halohydrin with an alkali metal hydroxide to obtain an epoxide and an alkali metal halide; optionally, (3) performing a bipolar membrane electrodialysis of the alkali metal halide to obtain an alkali metal hydroxide and a halogen hydride.
    Type: Application
    Filed: March 13, 2017
    Publication date: March 14, 2019
    Inventors: Xingtian Shu, Min Lin, Weilin Liao
  • Patent number: 10130944
    Abstract: The present invention provides a rare earth-containing Y zeolite and a preparation process thereof, said rare earth-containing Y zeolite has a rare earth content as rare earth oxide of 10-25 wt %, a unit cell size of 2.440-2.472 nm, a crystallinity of 35-65%, a Si/Al atom ratio in the skeleton of 2.5-5.0; and a product of the ratio of the strength I1 of the peak at 2?=11.8±0.1° to the strength I2 of the peak at 2?=12.3±0.1° in the X-ray diffraction spectrogram of the zeolite and the weight percent of rare earth as rare earth oxide in the zeolite of higher than 48.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: November 20, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jinyu Zheng, Yibin Luo, Xingtian Shu
  • Publication number: 20180312415
    Abstract: A method for the treatment of silicon-containing wastewater from the preparation of a molecular sieve or a catalyst includes the step of contacting the silicon-containing wastewater with at least one acid or at least one alkali, so that at least a part of the silicon elements in the silicon-containing wastewater form a colloid. A mixture containing a colloid is thus obtained. A silicon-containing solid phase and a first liquid phase are produced by a solid-liquid separation. A solid phase and a second liquid phase are produced by a solid-liquid separation after at least a part of the metal elements in the first liquid phase form a precipitate. At least a part of the second liquid phase is subjected to electrodialysis to produce an acid liquor and/or an alkali liquor. The silicon-containing solid phase can be used as the raw material for a molecular sieve synthesis.
    Type: Application
    Filed: October 28, 2016
    Publication date: November 1, 2018
    Inventors: Zhongqing LIU, Yibin LUO, Lina ZHOU, Xingtian SHU
  • Patent number: 9896343
    Abstract: The present invention relates to a titanium silicalite molecular sieve, wherein the crystal grain of the titanium silicalite molecular sieve has a ratio of (surface Si/Ti ratio):(bulk Si/Ti ratio) being larger than 1.1 and less than 5.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: February 20, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Changjiu Xia, Bin Zhu, Min Lin, Xinxin Peng, Xingtian Shu, Chunfeng Shi
  • Publication number: 20170296971
    Abstract: A process for ion-exchanging an exchangeable-ion containing solid material involves several steps. There is a bipolar membrane electrodialysis step, which involves subjecting an aqueous ion-containing solution to a bipolar membrane electrodialysis to produce an acid liquid. The process also contains an ion-exchange step, during which the exchangeable-ion containing solid material is contacted with the acid liquid to conduct ion-exchange to produce a slurry containing the ion-exchanged solid material. It further include a solid-liquid separation step, during which the slurry containing the ion-exchanged solid material is subject to a solid-liquid separation to produce a solid phase and a liquid phase. The pH value of the liquid phase is adjusted to 4-6.5. The pH-adjusted liquid phase is further subject to a solid-liquid separation to produce a treatment liquid.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 19, 2017
    Inventors: Zhongqing LIU, Lina ZHOU, Yibin LUO, Xingtian SHU
  • Patent number: 9782757
    Abstract: A modified Y-type molecular sieve has a unit cell size of 2.420-2.440 nm. It contains a phosphorus content of 0.05-6%, a RE2O3 content of 0.03-10%, and an alumina content of less than 22%, and a specific hydroxyl nest concentration of less than 0.35 mmol/g and more than 0.05 mmol/g. The modified Y-type molecular sieve is used as the active component in a catalytic cracking catalyst. The catalytic cracking catalyst maintains a stable activity for a long time, effectively controls the coke yield and increases the heavy oil utilization.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: October 10, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yibin Luo, Li Zhuang, Minggang Li, Ying Ouyang, Xingtian Shu
  • Patent number: 9771529
    Abstract: A process for producing light olefins and aromatics, which comprises reacting a feedstock by contacting with a catalytic cracking catalyst in at least two reaction zones, wherein the reaction temperature of at least one reaction zone among the reaction zones downstream of the first reaction zone is higher than that of the first reaction zone and its weight hourly space velocity is lower than that of the first reaction zone, separating the spent catalyst from the reaction product vapor, regenerating the separated spent catalyst and returning the regenerated catalyst to the reactor, and separating the reaction product vapor to obtain the desired products, light olefins and aromatics. This process produces maximum light olefins such as propylene, ethylene, etc from heavy feedstocks, wherein the yield of propylene exceeds 20% by weight, and produces aromatics such as toluene, xylene, etc at the same time.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: September 26, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Zhijian Da, Dadong Li, Xieqing Wang, Xingtian Shu, Jiushun Zhang, Hong Nie, Chaogang Xie, Zhigang Zhang, Wei Wang
  • Patent number: 9656251
    Abstract: The present invention relates to a full-Si molecular sieve, wherein the full-Si molecular sieve has a Q4/Q3 of (10-90):1 wherein Q4 is the peak strength at the chemical shift of ?112±2 ppm in the 29Si NMR spectrum of the full-Si molecular sieve, expressed as the peak height relative to the base line; and Q3 is the peak strength at the chemical shift of ?103±2 ppm in the 29Si NMR spectrum of the full-Si molecular sieve, expressed as the peak height relative to the base line.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: May 23, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Xingtian Shu, Changjiu Xia, Min Lin, Bin Zhu, Xinxin Peng, Aiguo Zheng, Mudi Xin, Yanjuan Xiang, Chunfeng Shi
  • Patent number: 9586895
    Abstract: A process for producing dimethyl sulfoxide, wherein said process comprises the following steps: (1) contacting hydrogen sulfide with methanol to produce a mixture containing dimethyl sulfide, and separating dimethyl sulfide from the mixture; and (2) in the presence or absence of a solvent, contacting dimethyl sulfide obtained in step (1) with at least one oxidant and a catalyst to produce a mixture containing dimethyl sulfoxide, said catalyst comprises at least one Ti—Si molecular sieve.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 7, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Chunfeng Shi, Min Lin, Xingtian Shu, Xuhong Mu, Bin Zhu
  • Publication number: 20150284322
    Abstract: A process for producing dimethyl sulfoxide, wherein said process comprises the following steps: (1) contacting hydrogen sulfide with methanol to produce a mixture containing dimethyl sulfide, and separating dimethyl sulfide from the mixture; and (2) in the presence or absence of a solvent, contacting dimethyl sulfide obtained in step (1) with at least one oxidant and a catalyst to produce a mixture containing dimethyl sulfoxide, said catalyst comprises at least one Ti—Si molecular sieve.
    Type: Application
    Filed: October 29, 2013
    Publication date: October 8, 2015
    Applicant: RESEARCH INSTITUTE OF PERTOLEUM PROCESSING, SINOPEC
    Inventors: Chunfeng Shi, Min Lin, Xingtian Shu, Xuhong Mu, Bin Zhu
  • Publication number: 20150158025
    Abstract: The present invention provides a rare earth-containing Y zeolite and a preparation process thereof, said rare earth-containing Y zeolite has a rare earth content as rare earth oxide of 10-25 wt %, a unit cell size of 2.440-2.472 nm, a crystallinity of 35-65%, a Si/Al atom ratio in the skeleton of 2.5-5.0; and a product of the ratio of the strength I1 of the peak at 2?=11.8±0.1° to the strength I2 of the peak at 2?=12.3±0.1° in the X-ray diffraction spectrogram of the zeolite and the weight percent of rare earth as rare earth oxide in the zeolite of higher than 48.
    Type: Application
    Filed: June 27, 2013
    Publication date: June 11, 2015
    Inventors: Jinyu Zheng, Yibin Luo, Xingtian Shu
  • Publication number: 20150118149
    Abstract: The present invention relates to a titanium silicalite molecular sieve, wherein the crystal grain of the titanium silicalite molecular sieve has a ratio of (surface Si/Ti ratio):(bulk Si/Ti ratio) being larger than 1.1 and less than 5.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventors: Changjiu XIA, Bin ZHU, Min LIN, Xinxin PENG, Xingtian SHU, Chunfeng SHI
  • Publication number: 20150119569
    Abstract: The present invention relates to a full-Si molecular sieve, wherein the full-Si molecular sieve has a Q4/Q3 of (10-90):1.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventors: Xingtian SHU, Changjiu XIA, Min LIN, Bin ZHU, Xinxin PENG, Aiguo ZHENG, Mudi XIN, Yanjuan XIANG, Chunfeng SHI
  • Patent number: 8900445
    Abstract: A process for the catalytic conversion of hydrocarbons to convert petroleum hydrocarbons in a higher yield for light olefins, particularly propylene is disclosed, the process involving a hydrocarbon-converting catalyst comprising zeolite, phosphorous and a transition metal, as defined herein.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 2, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Chaogang Xie, Genquan Zhu, Yihua Yang, Yibin Luo, Jun Long, Xingtian Shu, Jiushun Zhang
  • Patent number: 8859791
    Abstract: A process for producing an alkylene oxide by olefin epoxidation, wherein said process comprises the steps of: (1) in a first olefin epoxidation condition, in the presence of a first solid catalyst, a first mixed stream containing a solvent, an olefin and H2O2 is subjected to an epoxidation in one or more fixed bed reactors and/or one or more moving bed reactors until the conversion of H2O2 reaches 50%-95%, then, optionally, the resulting reaction mixture obtained in the step (1) is subjected to a separation to obtain a first stream free of H2O2 and a second stream containing the unreacted H2O2, and the olefin is introduced to the second stream to produce a second mixed stream, or optionally, the olefin is introduced to the reaction mixture obtained in the step (1) to produce a second mixed stream; (2) in a second olefin epoxidation condition, the reaction mixture obtained in the step (1) or the second mixed stream obtained in the step (1) and a second solid catalyst are introduced to one or more slurry bed re
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: October 14, 2014
    Assignees: China Petroleum & Chemical Corporation, Hunan Changling Petrochemical Science and Technology Development Co. Ltd., Research Institute of Petroleum Processing, Sinopec
    Inventors: Hua Li, Min Lin, Xiaoju Wu, Wei Wang, Chijian He, Jizao Gao, Xingtian Shu, Shuanghua Wan, Bin Zhu