Patents by Inventor Xingtian Shu

Xingtian Shu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090325786
    Abstract: A hydrocarbon conversion catalyst, which comprises, based on the total weight of the catalyst, 1-60 wt % of a zeolite mixture, 5-99 wt % of a thermotolerant inorganic oxide and 0-70 wt % of clay, wherein said zeolite mixture comprises, based on the total weight of said zeolite mixture, 1-75 wt % of a zeolite beta modified with phosphorus and a transition metal M, 25-99 wt % of a zeolite having a MFI structure and 0-74 wt % of a large pore zeolite, wherein the anhydrous chemical formula of the zeolite beta modified with phosphorus and the transition metal M is represented in the mass percent of the oxides as (0-0.3)Na2O.(0.5-10)Al2O3.(1.3-10)P2O5.(0.7-15)MxOy.(64-97)SiO2, in which the transition metal M is one or more selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn; x represents the atom number of the transition metal M, and y represents a number needed for satisfying the oxidation state of the transition metal M.
    Type: Application
    Filed: September 28, 2006
    Publication date: December 31, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Yujian Liu, Huiping Tian, Xingtian Shu, Jun Long, Yibin Luo, Chaogang Xie, Zhenyu Chen, Liuzhou Zhao, Yuxia Zhu, Youbao Lu
  • Publication number: 20090318742
    Abstract: A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock.
    Type: Application
    Filed: July 12, 2007
    Publication date: December 24, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Wenhua Xie, Genquan Zhu, Qiang Fu, Zhiguo Wu, Shaobing Yu, Yihua Yang, Qiang Liu, Zhiqiang Qiao, Xuhong Mu, Chaogang Xie, Yibin Luo, Jiushun Zhang, Xingtian Shu
  • Publication number: 20090288985
    Abstract: A process for producing light olefins and aromatics, which comprises reacting a feedstock with a catalytic cracking catalyst in at least two reaction zones, wherein the reaction temperature of at least one reaction zone downstream of the first reaction zone is higher than that of the first reaction zone and its weight hourly space velocity is lower than that of the first reaction zone. The spent catalyst is separated from the reaction product vapor, regenerated and then returned to the reactor. The reaction product vapor is separated to obtain the desired products, light olefins and aromatics. This process efficiently produces light olefins such as propylene, ethylene, etc. from heavy feedstocks, wherein the yield of propylene exceeds 20% by weight, and produces aromatics such as toluene, xylene, etc. at the same time.
    Type: Application
    Filed: March 8, 2005
    Publication date: November 26, 2009
    Inventors: Jun Long, Zhijian Da, Dadong Li, Xieqing Wang, Xingtian Shu, Jiushun Zhang, Hong Nie, Chaogang Xie, Zhigang Zhang, Wei Wang
  • Publication number: 20090281363
    Abstract: A process for producing ethylene from ethanol combining the catalytic conversion of hydrocarbons: an ethanol feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, and a coked catalyst and an target product of ethylene are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, a spent catalyst and an oil vapor are obtained after separating the reaction stream, and the oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with ethanol feedstock.
    Type: Application
    Filed: July 12, 2007
    Publication date: November 12, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Zhiguo Wu, Wenhua Xie, Chaogang Xie, Qiang Liu, Xuhong Mu, Jiushun Zhang, Yibin Luo, Xingtian Shu, Chenghan Yan
  • Publication number: 20090264693
    Abstract: A process for the catalytic conversion of hydrocarbons, said process comprising the following steps: a feedstock of hydrocarbons is contacted with a hydrocarbon-converting catalyst to conduct a catalytic cracking reaction in a reactor, then the reaction products are taken from said reactor and fractionated to give light olefins, gasoline, diesel, heavy oil and other saturated hydrocarbons with low molecular weight, wherein said hydrocarbon-converting catalyst comprises, based on the total weight of the catalyst, 1-60 wt % of a zeolite mixture, 5-99 wt % of a thermotolerant inorganic oxide and 0-70 wt % of clay, wherein said zeolite mixture comprises, based on the total weight of said zeolite mixture, 1-75 wt % of a zeolite beta modified with phosphorus and a transition metal M, 25-99 wt % of a zeolite having a MFI structure and 0-74 wt % of a large pore zeolite, wherein the anhydrous chemical formula of the zeolite beta modified with phosphorus and the transition metal M is represented in the mass percent
    Type: Application
    Filed: September 28, 2006
    Publication date: October 22, 2009
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING SINOPEC
    Inventors: Chaogang Xie, Genquan Zhu, Yihua Yang, Yibin Luo, Jun Long, Xingtian Shu, Jiushun Zhang
  • Publication number: 20080308455
    Abstract: The invention discloses a catalyst and a method for cracking hydrocarbons. The catalyst comprises, calculated by dry basis, 10˜65 wt % ZSM-5 zeolite, 0˜60 wt % clay, 15˜60 wt % inorganic oxide binder, 0.5˜15 wt % one or more metal additives selected from the metals of Group VIIIB and 2˜25 wt % P additive, in which the metal additive is calculated by metal oxide and the P additive is calculated by P2O5. The method for cracking hydrocarbons using this catalyst increases the yield of FCC liquefied petroleum gas (LPG) and the octane number of FCC gasoline, as well as it increases the concentration of propylene in LPG dramatically.
    Type: Application
    Filed: December 28, 2005
    Publication date: December 18, 2008
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Wenbin Jiang, Mingde Xu, Huiping Tian, Yibin Luo, Xingtian Shu, Jiushun Zhang, Beiyan Chen, Haitao Song
  • Publication number: 20080261803
    Abstract: A modified zeolite beta having an anhydrous chemical formula, by weight % of the oxides, of (0-0.3)Na2O.(0.5-10)Al2O3.(1.3-10)P2O5.(0.7-15)MxOy.(70-97)SiO2, wherein M is one or more transition metal(s) selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn, x is the number of the atoms of said transition metal M, and y is a number that meets with the requirement of the oxidation state of said transition metal M, is disclosed. The modified zeolite beta can be used as an active component of a cracking catalyst or additive for catalytic cracking of petroleum hydrocarbons.
    Type: Application
    Filed: May 31, 2006
    Publication date: October 23, 2008
    Applicant: China Petroleum & Chemical Corporation
    Inventors: Yibin Luo, Zhijian Da, Ying Ouyang, Li Zhuang, Jun Long, Xingtian Shu, Baoning Zong
  • Publication number: 20070293714
    Abstract: A catalyst for converting hydrocarbons includes, based on the weight of the catalyst, 1-60% by weight of a zeolite, 0.1-10% by weight of an assistant catalytic component, 5-98% by weight of a thermotolerant inorganic oxide, and 0-70% by weight of a clay in terms of the oxide. The zeolite is a MFI-structured zeolite-containing phosphor and transition metal(s) or a mixture of the zeolite and a macroporous zeolite, which comprises, based on the weight of the mixture, 75-100% by weight of said MFI-structured zeolite containing phosphor and transition metal(s) and 0-25% by weight of the macroporous zeolite. In terms of the mass of the oxide, the MFI-structured zeolite containing phosphor and transition metal(s) has the following anhydrous chemical formula: (0-0.3)Na2O.(0.3-5.5)Al2O3.(1.0-10)P2O5.(0.7-15)M1xOy.(0.01-5)M2mOn(0-10)RE2O3.(70-97)SiO2??I or (0-0.3)Na2O.(0.3-5)Al2O3.(1.0-10)P2O5.(0.7-15)MpOq.(0-10)RE2O3.
    Type: Application
    Filed: March 31, 2005
    Publication date: December 20, 2007
    Inventors: Jun Long, Zhijian Da, Huiping Tian, Zhenyu Chen, Weilin Zhang, Xingtian Shu, Jiushun Zhang, Yuxia Zhu, Yujian Liu
  • Publication number: 20070275852
    Abstract: A MFI-structured molecular sieve containing phosphorus and metal components has a formula expressed in anhydrous form and on the basis of oxide weight, as follows: (0˜0.3) Na2O (0.5˜5.5) Al2O3 (1.3˜10) P2O5 (0.7˜15) MlxOy (0.01˜5) M2mOn (70˜97) SiO2, wherein M1 is one of transition metals selected from the group consisting of Fe, Co and Ni, and M2 is any one of metals selected from the group consisting of Zn, Mn, Ga and Sn. Preparation processes and uses of the instant molecular sieve are also provided. The molecular sieve has an excellent performance for increasing the yield of lower olefins and increasing the aromatics content in gasoline, and can be used as a shape-selective active component for the catalytic cracking catalyst of petroleum hydrocarbons or its additives.
    Type: Application
    Filed: October 28, 2004
    Publication date: November 29, 2007
    Applicant: Research Institute of Petroleum
    Inventors: Yibin Luo, Ying Ouyang, Xingtian Shu, Mingyuan He, Dianzhong Wang, Baoning Zong, Minggang Li
  • Publication number: 20070060468
    Abstract: This invention relates to a composition with desulfurization property, in which the desulfurization component is a kind of molecular sieves with incorporation of vanadium into the skeleton. The composition has high hydrothermal stability and the vanadium is hard to lose.
    Type: Application
    Filed: June 24, 2004
    Publication date: March 15, 2007
    Inventors: Baoning Zong, Jinyu Zheng, Wenhua Xie, Yong Xu, Xuhong Mu, Yibin Luo, Minggang Li, Xingtian Shu
  • Patent number: 6596156
    Abstract: A SAPO-11 silicoaluminopihosphate molecular sieve, its preparation method, and a catalyst containing the same are disclosed. The X-ray diffraction data of the molecular sieve before removing the template by calcination are as listed in Table 1. The molar composition of this molecular sieve after removing the template by calcination expressed in anhydrous oxides is Al2O3: yP2O5: zSiO2, in which y has a value of 0.60-1.20, and z has a value of 0.05-1.3, characterized in that after removing the template by calcination, its X-ray diffraction data are as listed in Table 3, and that the crystal structures of the molecular sieve before and after removing the template by calcination are substantially the same. The catalyst is composed of 10-85% by weight of said SAPO-11 molecular sieve, 0.05-1.5% by weight of Pd or Pt, and the balance is alumina.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: July 22, 2003
    Assignees: China Petroleum and Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Fengmei Zhang, Yucming Liu, Xingtian Shu, Weidong Wang, Fengming Qin
  • Patent number: 6475465
    Abstract: The present invention relates to a titanium-silicalite (TS-1) molecular sieve and the method for preparation of the same, wherein each crystallite of said titanium-silicalite molecular sieve has a hollow cavity with a radial length of 5-300 nm. The benzene adsorption capacity of the molecular sieve determined at 25° C. and P/P0=0.10 for 1 hour is at least 70 mg/g; and the method for preparation of said molecular sieve comprises an acid-treatment and then an organic-base treatment of the synthesized TS-1 molecular sieve, or only an organic-base treatment. The TS-1 molecular sieve of the present invention has a relatively high reactivity and activity stability in the catalytic oxidation.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: November 5, 2002
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Min Lin, Xingtian Shu, Xieqing Wang, Bin Zhu
  • Patent number: 6368996
    Abstract: An amorphous alloy catalyst for hydrogenation and its preparation method are disclosed herein. The catalyst essentially consists of nickel ranging between 60 and 98 wt %, iron ranging between 0 and 20 wt %, one doping metal element selected from the group consisting of chromium, cobalt, molybdenum, manganese and tungsten ranging between 0 and 20 wt %, and aluminum ranging between 0.5 and 30 wt % based on the weight of said catalyst, wherein the weight percentages of iron and the doping metal element component may not be zero at the same time; and just one broad diffusion peak appears at about 2 &thgr;=45±1° on the XRD patterns of the catalyst within 2 &thgr; range from 20 to 80°. The catalyst herein can be used in processes for hydrogenation of unsaturated compounds such as olefin, alkyne, aromatics, nitro, carbonyl groups, nitrile and soon, and for hydrorefining of caprolactam in particular.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: April 9, 2002
    Assignees: China Petroleum Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Xuhong Mu, Baoning Zong, Enze Min, Xuan Wang, Ying Wang, Xiaoxin Zhang, Xingtian Shu
  • Publication number: 20010021369
    Abstract: The present invention relates to a titanium-silicalite (TS-1) molecular sieve and the method for preparation of the same, wherein each crystallite of said titanium-silicalite molecular sieve has a hollow cavity with a radial length of 5-300 nm. The benzene adsorption capacity of the molecular sieve determined at 25° C. and P/P0=0.10 for 1 hour is at least 70 mg/g; and the method for preparation of said molecular sieve comprises an acid-treatment and then an organic-base treatment of the synthesized TS-1 molecular sieve, or only an organic-base treatment. The TS-1 molecular sieve of the present invention has a relatively high reactivity and activity stability in the catalytic oxidation.
    Type: Application
    Filed: December 6, 2000
    Publication date: September 13, 2001
    Inventors: Min Lin, Xingtian Shu, Xieqing Wang, Bin Zhu
  • Patent number: 6080698
    Abstract: A molecular sieve containing composition, which can be applied in catalytic cracking reaction for producing more ethylene and propylene, and its preparation method. The composition contains a pentasil-type molecular sieve having a SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio of 15-60, prepared by activation and modification with phosphorus, alkaline earth metal and transition metal. The composition essentially includes 85.about.98% wt of pentasil-type molecular sieve, 1.about.10% wt of P.sub.2 O.sub.5, 0.3.about.5% wt of alkaline earth oxide, and 0.3.about.5% wt of transition metal oxide. The molecular sieve structure and active centers have high thermal and hydrothermal stability. The salient feature of this composition is that when applied as an active component of cracking catalyst for catalytic pyrolysis process, the yield of ethylene is above 18% and the total yield of ethylene and propylene is more than 40%.
    Type: Grant
    Filed: September 17, 1998
    Date of Patent: June 27, 2000
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing
    Inventors: Fengmei Zhang, Xingtian Shu, Zhicheng Shi, Weidong Wang, Fengming Qin, Xieqing Wang
  • Patent number: 5951963
    Abstract: The present invention discloses a phosphorus-containing zeolite having MFI type structure. The anhydrous composition (based on the mole ratios of oxides) of the above zeolite is0.01-0.3Na.sub.2 O.Al.sub.2 O.sub.3.0.2-1.5P.sub.2 O.sub.5.30-90SiO.sub.2Said zeolite possesses a X-ray diffraction pattern listed in Table 1. The pore volume ratio of 1.0-10 nm mesopore to 10-membered ring pore is no less than 0.5. The crystal particle size of said zeolite is in the range of 0.8-2.0 micron. Said zeolite exhibits superior hydrothermal stability in catalytic conversion of hydrocarbons. Especially, when said zeolite is applied in catalytic cracking of hydrocarbons, it will enhance the crackability of large molecules, improve gasoline octane value and stability, and reduce the sulfur content in the gasoline as well.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: September 14, 1999
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Mingyuan He, Xiaoming Yang, Xingtian Shu, Jinge Luo
  • Patent number: 5232675
    Abstract: The present invention discloses a rare earth-containing high-silica zeolite having penta-sil type structure and process for the same. The anhydrous composition of the high-silica zeolite of the present invention (based on the mole ratio of oxides) can be defined by the formulaxRE.sub.2 O.sub.3 yNa.sub.2 OAl.sub.2 O.sub.3 zSiO.sub.2in which X=0.01-0.30, y=0.4-1.0, and z=20-60. The high-silica zeolite of the present invention is an useful active component for catalysts.
    Type: Grant
    Filed: January 14, 1992
    Date of Patent: August 3, 1993
    Assignees: Research Institute of Petroleum Processing, China Petrochemical Corporation
    Inventors: Xingtian Shu, Wei Fu, Mingyuan He, Meng Zhou, Zhicheng Shi, Shugin Zhang