Patents by Inventor Xinhe Bao

Xinhe Bao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11097253
    Abstract: Direct conversion of syngas produces liquid fuels and light olefins. The catalytic reaction is conducted on a fixed bed or a moving bed. The catalyst comprises A and B components. The component A is composed of active metal oxides, and the active ingredients of the component B are zeolites with a MEL structure. The distance between the geometric centers of catalyst A and catalyst B particles is 2 nm-10 mm; a weight ratio of the catalyst A to the catalyst B is 0.1-20. The pressure of the syngas is 0.1-10 MPa; reaction temperature is 300-600° C.; and space velocity is 300-10000 h?1. The reaction mainly produces gasoline with high octane number, and co-generates light olefins. Meanwhile, the selectivity for a methane byproduct is low (less than 10%).
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: August 24, 2021
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinhe Bao, Feng Jiao, Xiulian Pan
  • Patent number: 11084026
    Abstract: A process for direct synthesis of light olefins uses syngas as the feed raw material. This catalytic conversion process is conducted in a fixed bed or a moving bed using a composite catalyst containing components A and B (A+B). The active ingredient of catalyst A is metal oxide; and catalyst B is an oxide supported zeolite. A carrier is one or more of Al2O3, SiO2, TiO2, ZrO2, CeO2, MgO and Ga2O3 having hierarchical pores; the zeolite is one or more of CHA and AEI structures. The loading of the zeolite is 4%-45% wt. A weight ratio of the active ingredients in the catalyst A and the catalyst B is within a range of 0.1-20, and preferably 0.3-5. The total selectivity of the light olefins comprising ethylene, propylene and butylene can reach 50-90%, while the selectivity of a methane byproduct is less than 15%.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: August 10, 2021
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiulian Pan, Feng Jiao, Xinhe Bao
  • Patent number: 11072535
    Abstract: A zeolitic material having framework type CHA, comprising a transition metal M and an alkali metal A, and having a framework structure comprising a tetravalent element Y, a trivalent element X and O, wherein the transition metal M is a transition I metal of groups 7 to 12 of the periodic table, A is one or more of K and Cs, Y is one or more of Si, Ge, Ti, Sn and Zr, and X is one or more of Al, B, Ga and In. A process for preparing such a zeolitic material. Use of such a zeolitic material.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: July 27, 2021
    Assignee: BASF SE
    Inventors: Mathias Feyen, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk De Vos, Hermann Gies, Feng-Shou Xiao, Toshiyuki Yokoi, Ute Kolb, Bernd Marler, Yong Wang, Trees De Baerdemaeker, Chuan Shi, Xiulian Pan, Xiangju Meng
  • Publication number: 20210121859
    Abstract: A catalyst for preparing light olefin using direct conversion of syngas is a composite catalyst and formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of component I is a metal oxide; and the component II is one or more than one of zeolite of CHA and AEI structures or metal modified CHA and/or AEI zeolite. A weight ratio of the active ingredients in the component Ito the component II is 0.1-20. The reaction process has high product yield and selectivity, wherein the sum of the selectivity of the propylene and butylene reaches 40-75%; and the sum of the selectivity of light olefin comprising ethylene, propylene and butylene can reach 50-90%. Meanwhile, the selectivity of a methane side product is less than 15%.
    Type: Application
    Filed: January 28, 2019
    Publication date: April 29, 2021
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO, Na LI
  • Publication number: 20210101801
    Abstract: A process for preparing a porous oxidic material with micropores and mesopores and a zeolitic material having an AEI framework with a tetravalent element Y, a trivalent element X and oxygen, the micropores having a pore diameter determined by nitrogen adsorption-desorption at 77 K of less than 2 nm and the mesopores having a pore diameter of from 2 to 50 nm, the process involving subjecting a synthesis mixture to hydrothermal crystallization at a crystallization temperature of from 90 to 200° C., to obtain a mother liquor containing the porous oxidic material having the zeolitic AEI framework.
    Type: Application
    Filed: January 22, 2019
    Publication date: April 8, 2021
    Applicant: BASF SE
    Inventors: Robert MCGUIRE, Ulrich MUELLER, Feng-Shou XIAO, Xiangju MENG, Xinhe BAO, Xiulian PAN, Toshiyuki YOKOI, Dirk DE VOS, Ute KOLB, Hermann GIES, Bernd MARLER, Weiping ZHANG
  • Publication number: 20210101800
    Abstract: Provided is a crystalline layered silicate, having an X-ray diffraction pattern comprising reflections at 2-theta values of (5.3±0.2)°, (8.6±0.2)°, (9.8±0.2)°, (21.7±0.2)° and (22.7±0.2). Also provided are a process for preparing the crystalline layered silicate and uses of the layered silicate. The process comprises steps of: (i) preparing a synthesis mixture comprising water, a source of Si, and a structure directing agent comprising a diethyldimethylammonium compound; (ii) subjecting the synthesis mixture obtained from (i) to hydrothermal synthesis conditions comprising heating the synthesis mixture obtained from (i) to a temperature in the range of from 110 to 180° C. and keeping the synthesis mixture at a temperature in this range under autogenous pressure for 1 to 6 days, obtaining a mother liquor comprising the crystalline layered silicate.
    Type: Application
    Filed: February 21, 2019
    Publication date: April 8, 2021
    Applicant: BASF SE
    Inventors: Mathias FEYEN, Ulrich MUELLER, Xinhe BAO, Weiping ZHANG, Dirk DE VOS, Hermann GIES, Feng-Shou XIAO, Toshiyuki YOKOI, Ute KOLB, Bernd MARLER, Yong WANG, Trees DE BAERDEMAEKER, Chuan SHI, Xiulian PAN, Xiangju MENG, Antje GRUENEWALD-LUEKE
  • Patent number: 10960387
    Abstract: Direct conversion of syngas to light olefins is carried out in a fixed bed or a moving bed reactor with a composite catalyst A+B. The active ingredient of catalyst A is active metal oxide; and catalyst B is one or more than one of zeolite of CHA and AEI structures or metal modified CHA and/or AEI zeolite. A spacing between geometric centers of the active metal oxide of the catalyst A and the particle of the catalyst B is 5 ?m-40 mm. A spacing between axes of the particles is preferably 100 ?m-5 mm, and more preferably 200 ?m-4 mm. A weight ratio of the active ingredients in the catalyst A and the catalyst B is within a range of 0.1-20 times, and preferably 0.3-5.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: March 30, 2021
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinhe Bao, Feng Jiao, Xiulian Pan, Minzheng Ding
  • Publication number: 20210053041
    Abstract: A process for preparing a zeolitic material comprising Ti, having framework type CHA and having a framework structure which comprises Si and O, said process comprising (i) preparing a pre-synthesis mixture comprising water, a CHA framework structure directing agent, and a zeolitic material comprising Ti, having framework type MFI and having a framework structure which comprises Si and O; (ii) removing water from the pre-synthesis mixture obtained from (i) by heating the pre-synthesis mixture to a temperature of less than 100° C. at a pressure of less than 1 bar (abs); (iii) hydrothermally crystallizing the zeolitic material comprising Ti, having framework type CHA and having a framework structure which comprises Si and O.
    Type: Application
    Filed: January 23, 2019
    Publication date: February 25, 2021
    Applicant: BASF SE
    Inventors: Mathias FEYEN, Ulrich MUELLER, Xinhe BAO, Weiping ZHANG, Dirk DE VOS, Hermann GIES, Feng-Shou XIAO, Toshiyuki YOKOI, Ute KOLB, Bernd MARLER, Yong WANG, Trees DE BAERDEMAEKER, Chuan SHI, Xiangju MENG, Xiulian PAN
  • Publication number: 20210002184
    Abstract: A process for direct synthesis of light olefins uses syngas as the feed raw material. This catalytic conversion process is conducted in a fixed bed or a moving bed using a composite catalyst containing components A and B (A+B). The active ingredient of catalyst A is metal oxide; and catalyst B is an oxide supported zeolite. A carrier is one or more of Al2O3, SiO2, TiO2, ZrO2, CeO2, MgO and Ga2O3 having hierarchical pores; the zeolite is one or more of CHA and AEI structures. The loading of the zeolite is 4%-45% wt. A weight ratio of the active ingredients in the catalyst A and the catalyst B is within a range of 0.1-20, and preferably 0.3-5. The total selectivity of the light olefins comprising ethylene, propylene and butylene can reach 50-90%, while the selectivity of a methane byproduct is less than 15%.
    Type: Application
    Filed: August 2, 2018
    Publication date: January 7, 2021
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO
  • Patent number: 10870583
    Abstract: A process for preparing a zeolitic material containing YO2 and X2O3, where Y and X represent a tetravalent element and a trivalent element, respectively, is described. The process includes (1) a step of preparing a mixture containing one or more structure directing agents, seed crystals, and a first zeolitic material containing YO2 and X2O3 and having FAU-, GIS-, MOR-, and/or LTA-type framework structures; and (2) a step of heating the mixture for obtaining a second zeolitic material containing YO2 and X2O3 and having a different framework structure than the first zeolitic material. The mixture prepared in (1) and heated in (2) contains 1000 wt % or less of H2O based on 100 wt % of YO2 in the framework structure of the first zeolitic material. A zeolitic material obtainable and/or obtained by the process and its use are also described.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: December 22, 2020
    Assignee: BASF SE
    Inventors: Robert McGuire, Mathias Feyen, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk De Vos, Hermann Gies, Feng-Shou Xiao, Toshiyuki Yokoi, Ute Kolb, Bernd Marler, Chuan Shi, Xiulian Pan, Xiangju Meng, Stefan Maurer, Yu Dai, Yong Wang, Trees De Baerdemaeker
  • Publication number: 20200346992
    Abstract: An organic base modified composite catalyst for producing ethylene by hydrogenation of carbon monoxide is a composite catalyst and formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of the component I is a metal oxide; the component II is an organic base modified zeolite of MOR topology; and a weight ratio of the active ingredients in the component I to the component II is 0.1-20, and preferably 0.3-8. The reaction process has an extremely high product yield and selectivity. The selectivity of C2-C3 olefins is as high as 78-87%; the selectivity of hydrocarbon products with more than 4 C atoms is less than 10%; the selectivity of a methane side product is extremely low (<9%); and meanwhile, the selectivity of the ethylene is 75-82%.
    Type: Application
    Filed: January 28, 2019
    Publication date: November 5, 2020
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO
  • Publication number: 20200346993
    Abstract: A catalyst containing LF-type B acid preparing ethylene using direct conversion of syngas is a composite catalyst and formed by compounding component A and component B in a mechanical mixing mode. The active ingredient of the component A is a metal oxide; the component B is a zeolite of MOR topology; and a weight ratio of the active ingredients in the component A to the component B is 0.1-20. The reaction process has an extremely high product yield and selectivity, with the selectivity for light olefin reaching 80-90%, wherein ethylene has high space time yield and can reach selectivity of 75-80%. Meanwhile, the selectivity for a methane side product is extremely low (<15%).
    Type: Application
    Filed: January 28, 2019
    Publication date: November 5, 2020
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO, Yuxiang CHEN
  • Publication number: 20200276571
    Abstract: Provided are a process for the preparation of an iron containing zeolitic material having an AEI framework structure using a quaternary phosphonium cation, as well as an iron containing zeolitic material per se as obtainable or obtained according to the process. Furthermore, an exhaust gas treatment system comprising the iron containing zeolitic material and the use of the iron containing zeolitic material as a catalyst are provided.
    Type: Application
    Filed: November 8, 2018
    Publication date: September 3, 2020
    Applicant: BASF SE
    Inventors: Mathias FEYEN, Ulrich MUELLER, Xinhe BAO, Weiping ZHANG, Dirk DE VOS, Hermann GIES, Feng-Shou XIAO, Toshiyuki YOKOI, Ute KOLB, Bernd MARLER, Yong WANG, Trees DE BAERDEMAEKER, Chuan SHI, Xiangju MENG, Xiulian PAN
  • Publication number: 20200276559
    Abstract: Direct conversion of syngas produces liquid fuels and light olefins. The catalytic reaction is conducted on a fixed bed or a moving bed. The catalyst comprises A and B components. The component A is composed of active metal oxides, and the active ingredients of the component B are zeolites with a MEL structure. The distance between the geometric centers of catalyst A and catalyst B particles is 2 nm-10 mm; a weight ratio of the catalyst A to the catalyst B is 0.1-20. The pressure of the syngas is 0.1-10 MPa; reaction temperature is 300-600° C.; and space velocity is 300-10000 h?1. The reaction mainly produces gasoline with high octane number, and co-generates light olefins. Meanwhile, the selectivity for a methane byproduct is low (less than 10%).
    Type: Application
    Filed: August 2, 2018
    Publication date: September 3, 2020
    Inventors: Xinhe BAO, Feng JIAO, Xiulian PAN
  • Publication number: 20200223705
    Abstract: A zeolitic material having framework type CHA, comprising a transition metal M and an alkali metal A, and having a framework structure comprising a tetravalent element Y, a trivalent element X and 0, wherein the transition metal M is a transition metal of groups 7 to 12 of the periodic table, A is one or more of K and Cs, Y is one or more of Si, Ge, Ti, Sn and Zr, and X is one or more of Al, B, Ga and In. A process for preparing such a zeolitic material. Use of such a zeolitic material.
    Type: Application
    Filed: August 3, 2018
    Publication date: July 16, 2020
    Applicant: BASF SE
    Inventors: Mathias FEYEN, Ulrich MUELLER, Xinhe BAO, Weiping ZHANG, Dirk DE VOS, Hermann GIES, Feng-Shou XIAO, Toshiyuki YOKOI, Ute KOLB, Bernd MARLER, Yong WANG, Trees DE BAERDEMAEKER, Chuan SHI, Xiulian PAN, Xiangju MENG
  • Patent number: 10702854
    Abstract: A process of methane catalytic conversion produces olefins, aromatics, and hydrogen under oxygen-free, continuous flowing conditions. Such a process has little coke deposition and realizes atom-economic conversion. Under the conditions encountered in a fixed bed reactor (i.e. reaction temperature: 750-1200° C.; reaction pressure: atmospheric pressure; the weight hourly space velocity of feed gas: 1000-30000 ml/g/h; and fixed bed), conversion of methane is 8-50%. The selectivity of olefins is 30-90%. And selectivity of aromatics is 10-70%. The catalyst for this methane conversion has a SiO2-based matrix having active species that are formed by confining dopant metal atoms in the lattice of the matrix.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: July 7, 2020
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinhe Bao, Xiaoguang Guo, Guangzong Fang, Dehui Deng, Hao Ma, Dali Tan
  • Patent number: 10661239
    Abstract: A reactor configuration comprises an inlet section I, a preheating section II, a transition section III, a reaction section IV and an outlet section V; except for the preheating section II and the reaction section IV, the existence of the inlet section I, the transition section III and the outlet section V depends on reaction conditions; and the process realizes no coke deposition synthesis of methane and high selectivity synthesis of ethylene. The methane conversion rate is 20-90%; ethylene selectivity is 65-95%; propylene and butylene selectivity is 5-25%; aromatic hydrocarbon selectivity is 0-30%; and coke deposition is zero.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: May 26, 2020
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinhe Bao, Xiaoguang Guo, Guangzong Fang, Xiulian Pan, Jingheng Meng, Qinqin Yu, Dali Tan
  • Publication number: 20200114340
    Abstract: A composition comprising a support material which comprises silicon carbide on the surface of which a zeolitic material of the AEI/CHA family is supported, wherein at least 99 weight-% of the framework structure of the zeolitic material consist of a tetravalent element Y which is one or more of Si, Ge, Ti, Sn and V; a trivalent element X which is one or more of Al, Ga, In, and B; O; and H.
    Type: Application
    Filed: June 25, 2018
    Publication date: April 16, 2020
    Applicant: BASF SE
    Inventors: Mathias FEYEN, Ulrich MUELLER, Xinhe BAO, Weiping ZHANG, Dirk de VOS, Hermann GIES, Feng-Shou XIAO, Yokoi TOSHIYUKI, Ute KOLB, Bernd MARLER, Yong WANG, Trees DE BAERDEMAEKER, Chuan SHI, Xiulian PAN, Xiangju MENG
  • Patent number: 10618855
    Abstract: Synthesis of aromatic hydrocarbons from synthesis gas in a fixed bed or a moving bed reactor loaded with a composite catalyst comprising Catalyst Component A and Catalyst Component B mixed via a mechanical mixing mode, wherein the active ingredient of the Catalyst Component A is active metal oxides; and the Catalyst Component B is one or both of ZSM-5 zeolite and metal modified ZSM-5; the pressure of the synthesis gas is 0.1-6 MPa; the reaction temperature is 300-600° C.; and the space velocity is 500-8000 h?1. The reaction process has a high product yield and selectivity, with the selectivity of aromatics reaching 50-85%, while the selectivity of the methane byproduct is less than 15%.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: April 14, 2020
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiulian Pan, Junhao Yang, Feng Jiao, Yifeng Zhu, Xinhe Bao
  • Patent number: 10596518
    Abstract: The present invention relates to a process for the production of a zeolitic material having a BEA-type framework structure comprising YO2 and X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture obtained in step (1); (3) subjecting the zeolitic material having a BEA-type framework structure obtained in step (2) to an ion-exchange procedure with Cu; and (4) subjecting the Cu ion-exchanged zeolitic material obtained in step (3) to an ion-exchange procedure with Fe; wherein Y is a tetravalent element, and X is a trivalent element, wherein the mixture provided in step (1) and crystallized in step (2) further comprises seed crystals comprising one or more zeolitic materials having a BEA-type framework structure, and wherein the mixture provided in step (1) and crystallized in step (2) does not contain an organotemplate as a structure-directing agent, as well as to the zeolitic material having
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: March 24, 2020
    Assignees: BASF SE, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Mathias Feyen, Stefan Maurer, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk De Vos, Hermann Gies, Feng-Shou Xiao, Toshiyuki Yokoi, Bilge Yilmaz