Patents by Inventor Xinhe Bao

Xinhe Bao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11459279
    Abstract: A supported catalyst for preparing light olefin using direct conversion of syngas is a composite catalyst and formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of component I is a metal oxide; and the component II is a supported zeolite. A carrier is one or more than one of hierarchical pores Al2O3, SiO2, TiO2, ZrO2, CeO2, MgO and Ga2O3; the zeolite is one or more than one of CHA and AEI structures; and the load of the zeolite is 4%-45% wt. A weight ratio of the active ingredients in the component I to the component II is 0.1-20. The reaction process has an extremely high light olefin selectivity; the sum of the selectivity of the light olefin comprising ethylene, propylene and butylene can reach 50-90%, while the selectivity of a methane side product is less than 7%.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: October 4, 2022
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CAS
    Inventors: Xiulian Pan, Feng Jiao, Xinhe Bao, Gen Li
  • Patent number: 11420911
    Abstract: A catalyst containing LF-type B acid preparing ethylene using direct conversion of syngas is a composite catalyst and formed by compounding component A and component B in a mechanical mixing mode. The active ingredient of the component A is a metal oxide; the component B is a zeolite of MOR topology; and a weight ratio of the active ingredients in the component A to the component B is 0.1-20. The reaction process has an extremely high product yield and selectivity, with the selectivity for light olefin reaching 80-90%, wherein ethylene has high space time yield and can reach selectivity of 75-80%. Meanwhile, the selectivity for a methane side product is extremely low (<15%).
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: August 23, 2022
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiulian Pan, Feng Jiao, Xinhe Bao, Yuxiang Chen
  • Patent number: 11369951
    Abstract: A catalyst for preparing light olefin using direct conversion of syngas is a composite catalyst and formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of component I is a metal oxide; and the component II is one or more than one of zeolite of CHA and AEI structures or metal modified CHA and/or AEI zeolite. A weight ratio of the active ingredients in the component I to the component II is 0.1-20. The reaction process has high product yield and selectivity, wherein the sum of the selectivity of the propylene and butylene reaches 40-75%; and the sum of the selectivity of light olefin comprising ethylene, propylene and butylene can reach 50-90%. Meanwhile, the selectivity of a methane side product is less than 15%.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 28, 2022
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CAS
    Inventors: Xiulian Pan, Feng Jiao, Xinhe Bao, Na Li
  • Patent number: 11365165
    Abstract: An organic base modified composite catalyst for producing ethylene by hydrogenation of carbon monoxide is a composite catalyst and formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of the component I is a metal oxide; the component II is an organic base modified zeolite of MOR topology; and a weight ratio of the active ingredients in the component I to the component II is 0.1-20, and preferably 0.3-8. The reaction process has an extremely high product yield and selectivity. The selectivity of C2-C3 olefins is as high as 78-87%; the selectivity of hydrocarbon products with more than 4 C atoms is less than 10%; the selectivity of a methane side product is extremely low (<9%); and meanwhile, the selectivity of the ethylene is 75-82%.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 21, 2022
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE Academy of Sciences
    Inventors: Xiulian Pan, Feng Jiao, Xinhe Bao
  • Publication number: 20210380888
    Abstract: A method for preparing liquid fuel by direct conversion of syngas uses the syngas as reaction raw material and conducts a catalytic conversion reaction on a fixed bed or a moving bed. The catalyst is a composite catalyst formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of the component I is a metal oxide, and the component II is at least one of zeolites with one-dimensional ten-membered ring porous channels; and a weight ratio of the active ingredient in the component I to that in the component II is 0.1-20. The reaction process has high product yield and selectivity. The selectivity for liquid fuel composed of C5-C11 can reach 50-80%. The selectivity for aromatic hydrocarbon is less than 40% in C5-C11, while the selectivity for methane side product is less than 15%.
    Type: Application
    Filed: December 10, 2019
    Publication date: December 9, 2021
    Inventors: Feng JIAO, Na LI, Xiulian PAN, Xinhe BAO
  • Publication number: 20210347711
    Abstract: A composite catalyst containing heteroatom-doped zeolite for preparing light olefin using direct conversion of syngas formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of component I is a metal oxide, and the component II is a heteroatom-doped zeolite. The zeolite topology is CHA or AEI, and the skeleton atoms include Al—P—O or Si—Al—P—O; the heteroatoms is at least one of divalent metal Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Mo, Cd, Ba and Ce, trivalent metal Ti and Ga, and tetravalent metal Ge. A weight ratio of the active ingredient in the component I to the component II is 0.1-20. The reaction process has high light olefin selectivity; the sum selectivity of the light olefin including ethylene, propylene and butylene can reach 50-90%, while the selectivity of a methane side product is less than 7%.
    Type: Application
    Filed: December 10, 2019
    Publication date: November 11, 2021
    Inventors: Feng JIAO, Gen LI, Xiulian PAN, Xinhe BAO
  • Publication number: 20210347710
    Abstract: A supported catalyst for preparing light olefin using direct conversion of syngas is a composite catalyst and formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of component I is a metal oxide; and the component II is a supported zeolite. A carrier is one or more than one of hierarchical pores Al2O3, SiO2, TiO2, ZrO2, CeO2, MgO and Ga2O3; the zeolite is one or more than one of CHA and AEI structures; and the load of the zeolite is 4%-45% wt. A weight ratio of the active ingredients in the component I to the component II is 0.1-20. The reaction process has an extremely high light olefin selectivity; the sum of the selectivity of the light olefin comprising ethylene, propylene and butylene can reach 50-90%, while the selectivity of a methane side product is less than 7%.
    Type: Application
    Filed: January 28, 2019
    Publication date: November 11, 2021
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO, Gen LI
  • Patent number: 11097253
    Abstract: Direct conversion of syngas produces liquid fuels and light olefins. The catalytic reaction is conducted on a fixed bed or a moving bed. The catalyst comprises A and B components. The component A is composed of active metal oxides, and the active ingredients of the component B are zeolites with a MEL structure. The distance between the geometric centers of catalyst A and catalyst B particles is 2 nm-10 mm; a weight ratio of the catalyst A to the catalyst B is 0.1-20. The pressure of the syngas is 0.1-10 MPa; reaction temperature is 300-600° C.; and space velocity is 300-10000 h?1. The reaction mainly produces gasoline with high octane number, and co-generates light olefins. Meanwhile, the selectivity for a methane byproduct is low (less than 10%).
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: August 24, 2021
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinhe Bao, Feng Jiao, Xiulian Pan
  • Patent number: 11084026
    Abstract: A process for direct synthesis of light olefins uses syngas as the feed raw material. This catalytic conversion process is conducted in a fixed bed or a moving bed using a composite catalyst containing components A and B (A+B). The active ingredient of catalyst A is metal oxide; and catalyst B is an oxide supported zeolite. A carrier is one or more of Al2O3, SiO2, TiO2, ZrO2, CeO2, MgO and Ga2O3 having hierarchical pores; the zeolite is one or more of CHA and AEI structures. The loading of the zeolite is 4%-45% wt. A weight ratio of the active ingredients in the catalyst A and the catalyst B is within a range of 0.1-20, and preferably 0.3-5. The total selectivity of the light olefins comprising ethylene, propylene and butylene can reach 50-90%, while the selectivity of a methane byproduct is less than 15%.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: August 10, 2021
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiulian Pan, Feng Jiao, Xinhe Bao
  • Patent number: 11072535
    Abstract: A zeolitic material having framework type CHA, comprising a transition metal M and an alkali metal A, and having a framework structure comprising a tetravalent element Y, a trivalent element X and O, wherein the transition metal M is a transition I metal of groups 7 to 12 of the periodic table, A is one or more of K and Cs, Y is one or more of Si, Ge, Ti, Sn and Zr, and X is one or more of Al, B, Ga and In. A process for preparing such a zeolitic material. Use of such a zeolitic material.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: July 27, 2021
    Assignee: BASF SE
    Inventors: Mathias Feyen, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk De Vos, Hermann Gies, Feng-Shou Xiao, Toshiyuki Yokoi, Ute Kolb, Bernd Marler, Yong Wang, Trees De Baerdemaeker, Chuan Shi, Xiulian Pan, Xiangju Meng
  • Publication number: 20210121859
    Abstract: A catalyst for preparing light olefin using direct conversion of syngas is a composite catalyst and formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of component I is a metal oxide; and the component II is one or more than one of zeolite of CHA and AEI structures or metal modified CHA and/or AEI zeolite. A weight ratio of the active ingredients in the component Ito the component II is 0.1-20. The reaction process has high product yield and selectivity, wherein the sum of the selectivity of the propylene and butylene reaches 40-75%; and the sum of the selectivity of light olefin comprising ethylene, propylene and butylene can reach 50-90%. Meanwhile, the selectivity of a methane side product is less than 15%.
    Type: Application
    Filed: January 28, 2019
    Publication date: April 29, 2021
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO, Na LI
  • Publication number: 20210101801
    Abstract: A process for preparing a porous oxidic material with micropores and mesopores and a zeolitic material having an AEI framework with a tetravalent element Y, a trivalent element X and oxygen, the micropores having a pore diameter determined by nitrogen adsorption-desorption at 77 K of less than 2 nm and the mesopores having a pore diameter of from 2 to 50 nm, the process involving subjecting a synthesis mixture to hydrothermal crystallization at a crystallization temperature of from 90 to 200° C., to obtain a mother liquor containing the porous oxidic material having the zeolitic AEI framework.
    Type: Application
    Filed: January 22, 2019
    Publication date: April 8, 2021
    Applicant: BASF SE
    Inventors: Robert MCGUIRE, Ulrich MUELLER, Feng-Shou XIAO, Xiangju MENG, Xinhe BAO, Xiulian PAN, Toshiyuki YOKOI, Dirk DE VOS, Ute KOLB, Hermann GIES, Bernd MARLER, Weiping ZHANG
  • Publication number: 20210101800
    Abstract: Provided is a crystalline layered silicate, having an X-ray diffraction pattern comprising reflections at 2-theta values of (5.3±0.2)°, (8.6±0.2)°, (9.8±0.2)°, (21.7±0.2)° and (22.7±0.2). Also provided are a process for preparing the crystalline layered silicate and uses of the layered silicate. The process comprises steps of: (i) preparing a synthesis mixture comprising water, a source of Si, and a structure directing agent comprising a diethyldimethylammonium compound; (ii) subjecting the synthesis mixture obtained from (i) to hydrothermal synthesis conditions comprising heating the synthesis mixture obtained from (i) to a temperature in the range of from 110 to 180° C. and keeping the synthesis mixture at a temperature in this range under autogenous pressure for 1 to 6 days, obtaining a mother liquor comprising the crystalline layered silicate.
    Type: Application
    Filed: February 21, 2019
    Publication date: April 8, 2021
    Applicant: BASF SE
    Inventors: Mathias FEYEN, Ulrich MUELLER, Xinhe BAO, Weiping ZHANG, Dirk DE VOS, Hermann GIES, Feng-Shou XIAO, Toshiyuki YOKOI, Ute KOLB, Bernd MARLER, Yong WANG, Trees DE BAERDEMAEKER, Chuan SHI, Xiulian PAN, Xiangju MENG, Antje GRUENEWALD-LUEKE
  • Patent number: 10960387
    Abstract: Direct conversion of syngas to light olefins is carried out in a fixed bed or a moving bed reactor with a composite catalyst A+B. The active ingredient of catalyst A is active metal oxide; and catalyst B is one or more than one of zeolite of CHA and AEI structures or metal modified CHA and/or AEI zeolite. A spacing between geometric centers of the active metal oxide of the catalyst A and the particle of the catalyst B is 5 ?m-40 mm. A spacing between axes of the particles is preferably 100 ?m-5 mm, and more preferably 200 ?m-4 mm. A weight ratio of the active ingredients in the catalyst A and the catalyst B is within a range of 0.1-20 times, and preferably 0.3-5.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: March 30, 2021
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinhe Bao, Feng Jiao, Xiulian Pan, Minzheng Ding
  • Publication number: 20210053041
    Abstract: A process for preparing a zeolitic material comprising Ti, having framework type CHA and having a framework structure which comprises Si and O, said process comprising (i) preparing a pre-synthesis mixture comprising water, a CHA framework structure directing agent, and a zeolitic material comprising Ti, having framework type MFI and having a framework structure which comprises Si and O; (ii) removing water from the pre-synthesis mixture obtained from (i) by heating the pre-synthesis mixture to a temperature of less than 100° C. at a pressure of less than 1 bar (abs); (iii) hydrothermally crystallizing the zeolitic material comprising Ti, having framework type CHA and having a framework structure which comprises Si and O.
    Type: Application
    Filed: January 23, 2019
    Publication date: February 25, 2021
    Applicant: BASF SE
    Inventors: Mathias FEYEN, Ulrich MUELLER, Xinhe BAO, Weiping ZHANG, Dirk DE VOS, Hermann GIES, Feng-Shou XIAO, Toshiyuki YOKOI, Ute KOLB, Bernd MARLER, Yong WANG, Trees DE BAERDEMAEKER, Chuan SHI, Xiangju MENG, Xiulian PAN
  • Publication number: 20210002184
    Abstract: A process for direct synthesis of light olefins uses syngas as the feed raw material. This catalytic conversion process is conducted in a fixed bed or a moving bed using a composite catalyst containing components A and B (A+B). The active ingredient of catalyst A is metal oxide; and catalyst B is an oxide supported zeolite. A carrier is one or more of Al2O3, SiO2, TiO2, ZrO2, CeO2, MgO and Ga2O3 having hierarchical pores; the zeolite is one or more of CHA and AEI structures. The loading of the zeolite is 4%-45% wt. A weight ratio of the active ingredients in the catalyst A and the catalyst B is within a range of 0.1-20, and preferably 0.3-5. The total selectivity of the light olefins comprising ethylene, propylene and butylene can reach 50-90%, while the selectivity of a methane byproduct is less than 15%.
    Type: Application
    Filed: August 2, 2018
    Publication date: January 7, 2021
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO
  • Patent number: 10870583
    Abstract: A process for preparing a zeolitic material containing YO2 and X2O3, where Y and X represent a tetravalent element and a trivalent element, respectively, is described. The process includes (1) a step of preparing a mixture containing one or more structure directing agents, seed crystals, and a first zeolitic material containing YO2 and X2O3 and having FAU-, GIS-, MOR-, and/or LTA-type framework structures; and (2) a step of heating the mixture for obtaining a second zeolitic material containing YO2 and X2O3 and having a different framework structure than the first zeolitic material. The mixture prepared in (1) and heated in (2) contains 1000 wt % or less of H2O based on 100 wt % of YO2 in the framework structure of the first zeolitic material. A zeolitic material obtainable and/or obtained by the process and its use are also described.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: December 22, 2020
    Assignee: BASF SE
    Inventors: Robert McGuire, Mathias Feyen, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk De Vos, Hermann Gies, Feng-Shou Xiao, Toshiyuki Yokoi, Ute Kolb, Bernd Marler, Chuan Shi, Xiulian Pan, Xiangju Meng, Stefan Maurer, Yu Dai, Yong Wang, Trees De Baerdemaeker
  • Publication number: 20200346992
    Abstract: An organic base modified composite catalyst for producing ethylene by hydrogenation of carbon monoxide is a composite catalyst and formed by compounding component I and component II in a mechanical mixing mode. The active ingredient of the component I is a metal oxide; the component II is an organic base modified zeolite of MOR topology; and a weight ratio of the active ingredients in the component I to the component II is 0.1-20, and preferably 0.3-8. The reaction process has an extremely high product yield and selectivity. The selectivity of C2-C3 olefins is as high as 78-87%; the selectivity of hydrocarbon products with more than 4 C atoms is less than 10%; the selectivity of a methane side product is extremely low (<9%); and meanwhile, the selectivity of the ethylene is 75-82%.
    Type: Application
    Filed: January 28, 2019
    Publication date: November 5, 2020
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO
  • Publication number: 20200346993
    Abstract: A catalyst containing LF-type B acid preparing ethylene using direct conversion of syngas is a composite catalyst and formed by compounding component A and component B in a mechanical mixing mode. The active ingredient of the component A is a metal oxide; the component B is a zeolite of MOR topology; and a weight ratio of the active ingredients in the component A to the component B is 0.1-20. The reaction process has an extremely high product yield and selectivity, with the selectivity for light olefin reaching 80-90%, wherein ethylene has high space time yield and can reach selectivity of 75-80%. Meanwhile, the selectivity for a methane side product is extremely low (<15%).
    Type: Application
    Filed: January 28, 2019
    Publication date: November 5, 2020
    Inventors: Xiulian PAN, Feng JIAO, Xinhe BAO, Yuxiang CHEN
  • Publication number: 20200276559
    Abstract: Direct conversion of syngas produces liquid fuels and light olefins. The catalytic reaction is conducted on a fixed bed or a moving bed. The catalyst comprises A and B components. The component A is composed of active metal oxides, and the active ingredients of the component B are zeolites with a MEL structure. The distance between the geometric centers of catalyst A and catalyst B particles is 2 nm-10 mm; a weight ratio of the catalyst A to the catalyst B is 0.1-20. The pressure of the syngas is 0.1-10 MPa; reaction temperature is 300-600° C.; and space velocity is 300-10000 h?1. The reaction mainly produces gasoline with high octane number, and co-generates light olefins. Meanwhile, the selectivity for a methane byproduct is low (less than 10%).
    Type: Application
    Filed: August 2, 2018
    Publication date: September 3, 2020
    Inventors: Xinhe BAO, Feng JIAO, Xiulian PAN