Patents by Inventor Xinhe Bao

Xinhe Bao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9260313
    Abstract: The present invention relates to a process for the preparation of a silicate compound, comprising (1) providing at least one layered silicate; and (2) mixing said layered silicate with water and at least one silicon containing compound according to formula R4-mSi[—(SiR2)n—R]m wherein at least one residue R is a leaving group and none of the residues R contains Si; m is 0, 1, 2, 3, or 4; and n is an integer greater than or equal to 0.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 16, 2016
    Assignees: BASF SE, Tokyo Institute of Technology
    Inventors: Bilge Yilmaz, Ulrich Müller, Feng-Shou Xiao, Hermann Gies, Takashi Tatsumi, Dirk de Vos, Xinhe Bao, Weiping Zhang
  • Patent number: 9181145
    Abstract: The present invention relates to a process for the alkylation of an organic compound comprising: (a) providing a catalyst comprising one or more zeolitic materials having a BEA framework structure, wherein the BEA framework structure comprises YO2 and optionally comprises X2O3, wherein Y is a tetravalent element, and X is a trivalent element, (b) contacting the catalyst with one or more alkylatable organic compounds in the presence of one or more alkylating agents in one or more reactors for obtaining one or more alkylated organic compounds, wherein the one or more zeolitic materials is obtainable from a synthetic process which does not employ an organotemplate as structure directing agent.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: November 10, 2015
    Assignees: BASF SE, Tokyo Institute of Technology
    Inventors: Bilge Yilmaz, Ulrich Müller, Faruk Özkirim, Dirk de Vos, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Hermann Gies, Hiroyuki Imai, Bart Tijsebaert
  • Publication number: 20140336432
    Abstract: The present invention is related to the preparation of a metal lattice-doping catalyst in an amorphous molten state, and the process of catalyzing methane to make olefins, aromatics, and hydrogen using the catalyst under oxygen-free, continuous flowing conditions. Such a process has little coke deposition and realizes atom-economic conversion. Under the conditions encountered in a fixed bed reactor (i.e. reaction temperature: 750˜1200° C.; reaction pressure: atmospheric pressure; the weight hourly space velocity of feed gas: 1000˜30000 ml/g/h; and fixed bed), conversion of methane is 8-50%. The selectivity of olefins is 30˜90%. And selectivity of aromatics is 10˜70%. There is no coking. The reaction process has many advantages, including a long catalyst life (>100 hrs), high stability of redox and hydrothermal properties under high temperature, high selectivity towards target products, zero coke deposition, easy separation of products, good reproducibility, safe and reliable operation, etc.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 13, 2014
    Inventors: Xinhe Bao, Xiaoguang Guo, Guangzong Fang, Dehui Deng, Hao Ma, Dali Tan
  • Patent number: 8710271
    Abstract: The present invention relates to a process for the preparation of a zeolitic material having a BEA framework structure comprising the steps of: (i) providing one or more zeolitic materials having a BEA framework structure, wherein the BEA framework structure comprises YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element; (ii) subjecting the one or more zeolitic materials provided in step (i) to a procedure for removing at least a portion of X, preferably tetrahedrally coordinated X, from the BEA framework structure; wherein the Y:X molar ratios of the one or more zeolitic materials provided in step (i) are respectively comprised in the range of from 1 to 50.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: April 29, 2014
    Assignees: BASF SE, Tokyo Institute of Technology
    Inventors: Bilge Yilmaz, Ulrich Müller, Faruk Özkirim, Takashi Tatsumi, Feng-Shou Xiao, Dirk de Vos, Xinhe Bao, Weiping Zhang, Hermann Gies, Hiroyuki Imai, Bart Tijsebaert
  • Publication number: 20140113981
    Abstract: Described is a process for the production of a pillared silicate. The process comprises (i) providing a layered silicate; (ii) interlayer expanding the layered silicate provided in step (i) comprising a step of treating the layered silicate with one or more swelling agents; (iii) treating the interlayer expanded silicate obtained in step (ii) with one or more hydrolyzable silicon containing compounds; (iv) treating the interlayer expanded compound obtained in step (iii) with an aqueous solution to obtain a pillared silicate; (v) removing at least a portion of the one or more swelling agents from the pillared silicate obtained in step (iv); and (vi) impregnating the pillared silicate obtained in step (v) with one or more elements selected from the group consisting of Fe, Ru, Ir, and combinations of two or more thereof. Also described is a pillared silicate optionally obtainable from said process and its use, in particular, in a process for the production of one or more olefins according to the invention.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Xinhe Bao, Weiping Zhang, Dirk de Vos, Takashi Tatsumi, Feng-Shou Xiao, Hermann Gies, Hiroyuki Imai
  • Publication number: 20130101503
    Abstract: The present invention relates to a process for the preparation of a zeolitic material having a CHA framework structure, said zeolitic material comprising zeolite crystals having a core-shell structure, wherein said process comprises the steps of (1) providing a mixture comprising one or more sources for Z2O5, one or more sources for X2O3, optionally one or more structure directing agents, and seed crystals having a CHA framework structure, wherein the CHA framework structure of the seed crystals comprises YO2, X2O3, and optionally Z2O5, and wherein the seed crystals have a diameter of 450 nm or greater; (2) crystallizing the mixture provided in (1) to afford zeolite crystals comprising a core of seed crystal provided in step (1) and a shell crystallized on the seed crystal; wherein Z is a pentavalent element, Y is a tetravalent element, and X is a trivalent element.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 25, 2013
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Feng-Shou Xiao, Takashi Tatsumi, Dirk de Vos, Xinhe Bao, Weiping Zhang, Hermann Gies, Hiroyuki Imai, Bart Tijsebaert, Limin Ren, Chengguan Yang
  • Patent number: 8426332
    Abstract: The present invention relates to a pillared silicate compound comprising a layered silicate structure, and bridging metal atoms located between adjacent silicate layers of the silicate structure, wherein said bridging metal atoms form at least one covalent bond to each of the adjacent silicate layers, as well as a process for the preparation of a pillared silicate compound, and further includes a pillared silicate compound obtainable and or obtained according to said process, as well as a method of catalyzing a chemical reaction comprising the step of contacting one or more chemical compounds with the any of the aforementioned pillared silicate compounds.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: April 23, 2013
    Assignee: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Trees De Baerdemaeker, Hermann Gies, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Dirk de Vos
  • Publication number: 20120259141
    Abstract: The present invention relates to a process for the preparation of a zeolitic material having a BEA framework structure comprising the steps of: (i) providing one or more zeolitic materials having a BEA framework structure, wherein the BEA framework structure comprises YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element; (ii) subjecting the one or more zeolitic materials provided in step (i) to a procedure for removing at least a portion of X, preferably tetrahedrally coordinated X, from the BEA framework structure; wherein the Y:X molar ratios of the one or more zeolitic materials provided in step (i) are respectively comprised in the range of from 1 to 50.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 11, 2012
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Faruk Özkirim, Takashi Tatsumi, Feng-Shou Xiao, Dirk de Vos, Xinhe Bao, Weiping Zhang, Hermann Gies, Hiroyuki Imai, Bart Tijsebaert
  • Publication number: 20120259148
    Abstract: The present invention relates to a process for the alkylation of an organic compound comprising: (a) providing a catalyst comprising one or more zeolitic materials having a BEA framework structure, wherein the BEA framework structure comprises YO2 and optionally comprises X2O3, wherein Y is a tetravalent element, and X is a trivalent element, (b) contacting the catalyst with one or more alkylatable organic compounds in the presence of one or more alkylating agents in one or more reactors for obtaining one or more alkylated organic compounds, wherein the one or more zeolitic materials is obtainable from a synthetic process which does not employ an organotemplate as structure directing agent.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 11, 2012
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Faruk Özkirim, Dirk de Vos, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Hermann Gies, Hiroyuki Imai, Bart Tijsebaert
  • Publication number: 20120157735
    Abstract: A process for producing a supported mesoporous and microporous material, comprises contacting a support with a template to produce a supported template, and contacting the supported template with one or more microporous material precursor to produce a supported microporous material-template composite, and subsequently removing the template from the supported microporous material-template composite to produce the supported mesoprous and microporous material. A composition comprising a supported mesoprous and microporous material produced by this process can be used for methane dehydroaromatization.
    Type: Application
    Filed: June 23, 2009
    Publication date: June 21, 2012
    Inventors: Xinhe Bao, Ding Ma, Wenjie Shen, Lijun Gu
  • Publication number: 20120016045
    Abstract: The present invention relates to a process for the preparation of a layered silicate containing at least silicon and oxygen, comprising (1) providing a mixture containing silica and/or at least one silica precursor, water, at least one tetraalkylammonium compound selected from the group consisting of diethyldimethylammonium compound, a triethylmethylammonium compound, and a mixture of a diethyldimethylammonium and a triethylmethylammonium compound, and at least one base, and optionally at least one suitable seeding material; and (2) heating of the mixture obtained according to (1) under autogenous pressure (hydrothermal conditions) to a temperature in the range of from to 120 to 160° C. for a period in the range of from 5 to 10 days to give a suspension containing the layered silicate.
    Type: Application
    Filed: March 3, 2010
    Publication date: January 19, 2012
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Meike Pfaff, Hermann Gies, Feng-Shou Xiao, Takashi Tatsumi, Dirk de Vos, Xinhe Bao, Weiping Zhang
  • Publication number: 20120004465
    Abstract: A process for the preparation of an isomorphously substituted layered silicate comprising (1) providing a mixture containing silica or a precursor thereof, at least one structure directing agent (SDA) allowing for the crystallization of the layered silicate, and water; (2) heating the mixture obtained according to (1) under hydrothermal conditions; (3) adding at least one source at least one element suitable for isomorphous substitution; (4) heating the mixture obtained according to (3) under hydrothermal conditions.
    Type: Application
    Filed: March 3, 2010
    Publication date: January 5, 2012
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Meike Pfaff, Feng-Shou Xiao, Hermann Gies, Dirk de Vos, Xinhe Bao, Weiping Zhang, Takashi Tatsumi
  • Publication number: 20120004332
    Abstract: The present invention relates to a pillared silicate compound comprising a layered silicate structure, and bridging metal atoms located between adjacent silicate layers of the silicate structure, wherein said bridging metal atoms form at least one covalent bond to each of the adjacent silicate layers, as well as a process for the preparation of a pillared silicate compound, and further includes a pillared silicate compound obtainable and or obtained according to said process, as well as a method of catalyzing a chemical reaction comprising the step of contacting one or more chemical compounds with the any of the aforementioned pillared silicate compounds.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 5, 2012
    Applicants: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Trees De Baerdemaeker, Hermann Gies, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Dirk de Vos
  • Publication number: 20110319251
    Abstract: The present invention relates to a process for the preparation of an isomorphously substituted RUB-36 silicate comprising (1) providing a mixture containing silica, preferably amorphous silica, and/or at least one silica precursor, water, at least one suitable structure directing agent, (2) heating the mixture obtained according to (1) under hydrothermal conditions to give a suspension containing an RUB-36 silicate, (3) separating the RUB-36 silicate, wherein (a) either the mixture according to (1) contains at least one element suitable for isomorphous substitution and/or (b) the separated RUB-36 silicate according to (3) is subjected to isomorphous substitution.
    Type: Application
    Filed: March 3, 2010
    Publication date: December 29, 2011
    Applicant: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Feng-Shou Xiao, Hermann Gies, Xinhe Bao, Dirk De Vos, Takashi Tatsumi, Weiping Zhang
  • Publication number: 20110319250
    Abstract: The present invention relates to a process for the preparation of a silicate compound, comprising (1) providing at least one layered silicate; and (2) mixing said layered silicate with water and at least one silicon containing compound according to formula R4-mSi[—(SiR2)n—R]m wherein at least one residue R is a leaving group and none of the residues R contains Si; m is 0, 1, 2, 3, or 4; and n is an integer greater than or equal to 0.
    Type: Application
    Filed: March 3, 2010
    Publication date: December 29, 2011
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Feng-Shou Xiao, Hermann Gies, Takashi Tatsumi, Dirk de Vos, Xinhe Bao, Weiping Zhang
  • Publication number: 20110313226
    Abstract: Described is a process for the production of a zeolitic material having an LEV-type framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises: (1) preparing a mixture comprising one or more sources for YO2, one or more solvents, and optionally comprising seed crystals; and (2) crystallizing the mixture obtained in step (1); wherein Y is a tetravalent element, and X is a trivalent element, wherein the zeolitic material optionally comprises one or more alkali metals M, wherein the molar ratio of the total amount of the one or more solvents to the total amount of the one or more sources for YO2 based on YO2 is 9.5 or less, and wherein for crystallization temperatures of 175° C.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Bibiana Andrea Betancur Moreno, Hermann Gies, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Dirk de Vos, Meike Pfaff, Bin Xie, Haiyan Zhang
  • Publication number: 20110312486
    Abstract: Described is a process for the production of a zeolitic material having an LEV-type framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises (1) preparing a mixture comprising one or more sources for YO2, one or more solvents, and optionally comprising seed crystals; and (2) crystallizing the mixture obtained in step (1); wherein Y is a tetravalent element, and X is a trivalent element, and wherein the mixture crystallized in step (2) contains 3 wt.-% or less of one or more metals M based on 100 wt-% of YO2, preferably 1 wt.-% or less, more preferably 0.5 wt.-% or less, more preferably 0.1 wt.-% or less, more preferably 0.05 wt.-% or less, more preferably 0.01 wt.-% or less, more preferably 0.005 wt.-% or less, more preferably 0.001 wt.-% or less, more preferably 0.0005 wt.-% or less, more preferably 0.0001 wt.-% or less of one or more metals M based on 100 wt.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Meike Pfaff, Hermann Gies, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Dirk de Vos, Hiroyuki Imai, Bin Xie, Haiyan Zhang
  • Publication number: 20110160508
    Abstract: A catalytic composition and method for methane dehydroaromatisation, the catalytic composition comprising a catalyst metal active for methane dehydroaromatisation, a zeolite having pores with diameters of at least 10 non-oxygen frame-work atoms, and silicon carbide, and in which the method comprises contacting a methane-containing feedstock with said catalytic composition to produce one or more aromatic compounds and hydrogen.
    Type: Application
    Filed: May 21, 2008
    Publication date: June 30, 2011
    Inventors: Ding Ma, Lijun Gu, Xinhe Bao, Wenjie Shen, Martin Philip Atkins
  • Publication number: 20110135558
    Abstract: A process for producing porous silicon carbide comprising mixing particles of silicon carbide reactant with particles of carbon, and calcining the mixture in an atmosphere comprising molecular oxygen at a temperature in excess of 950° C., wherein the silicon carbide:carbon mass ratio in the mixture is in the range of from 5:1 to 1:10.
    Type: Application
    Filed: May 18, 2009
    Publication date: June 9, 2011
    Inventors: Ding Ma, Lijun Gu, Xinhe Bao, Wenjie Shen
  • Publication number: 20100234477
    Abstract: A catalyst and process is described for the conversion of hydrogen and one or more oxides of carbon in which the catalyst comprises an elemental carbon-containing support. Also described is a process for reducing agglomeration in carbon nanotubes, in which carbon nanotubes are suspended in a liquid and simultaneously treated by ultrasound and agitation. The method can be used to prepare carbon nanotube-supported catalysts that show high activity towards the conversion of feedstocks comprising hydrogen and one or more oxides of carbon.
    Type: Application
    Filed: February 16, 2006
    Publication date: September 16, 2010
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian China BP P.L.C.
    Inventors: Xinhe Bao, Wei Chen, Xiulian Pan, Zhongli Fan, Yunjie Ding, Hongyuan Luo