Patents by Inventor Xuefeng Liu

Xuefeng Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8035190
    Abstract: A device comprises a first sub-collector formed in an upper portion of a substrate and a lower portion of a first epitaxial layer and a second sub-collector formed in an upper portion of the first epitaxial layer and a lower portion of a second epitaxial layer. The device further comprises a reach-through structure connecting the first and second sub-collectors and an N-well formed in a portion of the second epitaxial layer and in contact with the second sub-collector and the reach-through structure. The device further comprises N+ diffusion regions in contact with the N-well, a P+ diffusion region in contact with the N-well, and shallow trench isolation structures between the N+ and P+ diffusion regions.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: October 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xuefeng Liu, Robert M. Rassel, Steven H. Voldman
  • Publication number: 20110228263
    Abstract: Illumination subsystems of a metrology or inspection system, metrology systems, inspection systems, and methods for illuminating a specimen for metrology measurements or for inspection are provided.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 22, 2011
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Yung-Ho (Alex) Chuang, Vladimir Levinski, Xuefeng Liu, John Fielden
  • Publication number: 20110227130
    Abstract: Semiconductor structures and methods of forming semiconductor structures, and more particularly to structures and methods of forming SiGe and/or SiGeC buried layers for SOI/SiGe devices. An integrated structure includes discontinuous, buried layers having alternating Si and SiGe or SiGeC regions. The structure further includes isolation structures at an interface between the Si and SiGe or SiGeC regions to reduce defects between the alternating regions. Devices are associated with the Si and SiGe or SiGeC regions.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xuefeng LIU, Robert M. RASSEL, Steven H. VOLDMAN
  • Patent number: 8022496
    Abstract: A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Alvin J. Joseph, Seong-dong Kim, Louis D. Lanzerotti, Xuefeng Liu, Robert M. Rassel
  • Patent number: 8017489
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device structure. The field effect device structure includes a gate electrode located over a channel region within a semiconductor substrate that separates a plurality of source and drain regions within the semiconductor substrate. The channel region includes a surface layer that comprises a carbon doped semiconductor material. The source and drain regions include a surface layer that comprises a semiconductor material that is not carbon doped. The particular selection of material for the channel region and source and drain regions provide for inhibited dopant diffusion and enhanced mechanical stress within the channel region, and thus enhanced performance of the field effect device.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Ephrem G. Gebgreselasie, Xuefeng Liu, Robert Russell Robison
  • Patent number: 8015538
    Abstract: The invention relates to noise isolation in semiconductor devices, and a design structure on which a subject circuit resides. A design structure is embodied in a machine readable medium used in a design process. The design structure includes a deep sub-collector located in a first epitaxial layer, and a doped region located in a second epitaxial layer, which is above the first epitaxial layer. The design structure further includes a reach-through structure penetrating from a surface of the device through the first and second epitaxial layers to the deep sub-collector, and a trench isolation structure penetrating from a surface of the device and surrounding the doped region.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D Coolbaugh, Xuefeng Liu, Robert M. Rassel, David C. Sheridan, Steven H. Voldman
  • Patent number: 8012814
    Abstract: A first portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate is protected, while a second portion of the top semiconductor layer is removed to expose a buried insulator layer. A first field effect transistor including a gate dielectric and a gate electrode located over the first portion of the top semiconductor layer is formed. A portion of the exposed buried insulator layer is employed as a gate dielectric for a second field effect transistor. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu, Yun Shi
  • Patent number: 7989306
    Abstract: Semiconductor structures and methods of forming semiconductor structures, and more particularly to structures and methods of forming SiGe and/or SiGeC buried layers for SOI/SiGe devices. An integrated structure includes discontinuous, buried layers having alternating Si and SiGe or SiGeC regions. The structure further includes isolation structures at an interface between the Si and SiGe or SiGeC regions to reduce defects between the alternating regions. Devices are associated with the Si and SiGe or SiGeC regions.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xuefeng Liu, Robert M. Rassel, Steven H. Voldman
  • Publication number: 20110143494
    Abstract: A method for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 16, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey B. JOHNSON, Xuefeng LIU, Bradley A. ORNER, Robert M. RASSEL
  • Publication number: 20110132652
    Abstract: A structure includes a substrate comprising a region having a circuit or device which is sensitive to electrical noise. Additionally, the structure includes a first isolation structure extending through an entire thickness of the substrate and surrounding the region and a second isolation structure extending through the entire thickness of the substrate and surrounding the region.
    Type: Application
    Filed: January 28, 2011
    Publication date: June 9, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Xuefeng Liu
  • Patent number: 7943404
    Abstract: A semiconductor chip integrating a transceiver, an antenna, and a receiver is provided. The transceiver is formed on a front side of a semiconductor substrate. At least one through substrate via provides electrical connection between the transceiver and the backside of the semiconductor substrate. The antenna, which is connected to the transceiver, is formed in a dielectric layer on the front side. The reflector plate is connected to the through substrate via, and is formed on the backside. The separation between the reflector plate and the antenna is about the quarter wavelength of millimeter waves, which enhances radiation efficiency of the antenna. An array of through substrate trenches may be formed and filled with a dielectric material to reduce the effective dielectric constant of the material between the antenna and the reflector plate, thereby reducing the wavelength of the millimeter wave and enhance the radiation efficiency.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Zhenrong Jin, Xuefeng Liu
  • Publication number: 20110102537
    Abstract: Methods and apparatus for implementing thermal printing techniques onto thermally sensitive print media use one or more laser arrays to provide optical heating. Thermal management of the laser arrays is described. Techniques for alignment of multiple monolithic arrays onto a common carrier are described. Various output optics are described.
    Type: Application
    Filed: May 19, 2005
    Publication date: May 5, 2011
    Inventors: Neil Griffin, Samuel Charles William Hyde, Anthony Hailes, Keith Turner, Nicholas James Wooder, John Haig Marsh, Stephen Gorton, Christopher Humby, Gary Ternent, Eric Goutain, Xuefeng Liu, Alexander Ballantyne
  • Patent number: 7936041
    Abstract: The structure for millimeter-wave frequency applications, includes a Schottky barrier diode (SBD) with a cutoff frequency (FC) above 1.0 THz formed on a SiGe BiCMOS wafer. A method is also contemplated for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel
  • Patent number: 7923808
    Abstract: A structure includes a substrate comprising a region having a circuit or device which is sensitive to electrical noise. Additionally, the structure includes a first isolation structure extending through an entire thickness of the substrate and surrounding the region and a second isolation structure extending through the entire thickness of the substrate and surrounding the region.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Xuefeng Liu
  • Patent number: 7915158
    Abstract: A method for forming an on-chip high frequency electro-static discharge device is described. In one embodiment, a wafer with a multi-metal level wiring is provided. The wafer includes a first dielectric layer with more than one electrode formed therein, a second dielectric layer disposed over the first dielectric layer with more than one electrode formed therein and more than one via connecting the more than one electrode in the first dielectric layer to a respective more than one electrode in the second dielectric layer. The more than one via is misaligned a predetermined amount with the more than one electrodes in the first dielectric layer and the second dielectric layer. The at least one of the misaligned vias forms a narrow gap with another misaligned via. A cavity trench is formed through the second dielectric layer between the narrow gap that separates the misaligned vias.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: March 29, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Xuefeng Liu, Anthony K. Stamper
  • Patent number: 7868423
    Abstract: A structure for a semiconductor device includes an isolated MOSFET (e.g., NFET) having triple-well technology adjacent to an isolated PFET which itself is adjacent to an isolated NFET. The structure includes a substrate in which is formed a deep n-band region underneath any n-wells, p-wells and p-band regions within the substrate. One p-band region is formed above the deep n-band region and underneath the isolated p-well for the isolated MOSFET, while another p-band region is formed above the deep n-band region and underneath all of the p-wells and n-wells, including those that are part of the isolated PFET and NFET devices within the substrate. The n-wells for the isolated MOSFET are connected to the deep n-band region.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: John J. Benoit, David S. Collins, Natalie B. Feilchenfeld, Michael L. Gautsch, Xuefeng Liu, Robert M. Rassel, Stephen A. St. Onge, James A. Slinkman
  • Publication number: 20100279483
    Abstract: A lateral passive device is disclosed including a dual annular electrode. The annular electrodes form an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced. In one embodiment, a device includes a first annular electrode surrounding a second annular electrode formed on a substrate, and the second annular electrode surrounds an insulator region. A related method is also disclosed.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Inventors: David S. Collins, Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
  • Patent number: 7821097
    Abstract: A lateral passive device is disclosed including a dual annular electrode. The annular electrodes form an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced. In one embodiment, a device includes a first annular electrode surrounding a second annular electrode formed on a substrate, and the second annular electrode surrounds an insulator region. A related method is also disclosed.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: David S. Collins, Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
  • Patent number: 7768762
    Abstract: A design structure for an on-chip high frequency electro-static discharge device is described. In one embodiment, the electro-static discharge device comprises a substrate and multiple metal level layers disposed on the substrate. Each metal level comprises more than one electrode formed therein and more than one via connecting with some of the electrodes in adjacent metal levels. The device further includes a gap formed about one of the metal level layers, wherein the gap is hermetically sealed to provide electro-static discharge protection for the integrated circuit.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: August 3, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Xuefeng Liu, Anthony K. Stamper
  • Patent number: 7759243
    Abstract: A method for forming an on-chip high frequency electro-static discharge device on an integrated circuit is described. In one embodiment of the method, a capped first dielectric layer with more than one electrode formed therein is provided. A second dielectric layer is deposited over the capped first dielectric layer. A first hard mask dielectric layer is deposited over the second dielectric layer. A cavity trench is formed through the first hard mask dielectric layer and the second dielectric layer to the first dielectric layer, wherein the cavity trench is formed in the first dielectric layer between two adjacent electrodes. At least one via is formed through the second dielectric layer about the cavity trench. A metal trench is formed around each of the at least one via. A release opening is formed over the cavity trench.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Xuefeng Liu, Anthony K. Stamper