Patents by Inventor Xuezhe Zheng

Xuezhe Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180261983
    Abstract: The disclosed embodiments relate to the design of a hybrid laser comprising a shared ring mirror coupled to a pair of buses by a 3 dB coupler (also referred to as a “symmetric splitter”), which is described in more detail below. Each bus is also coupled to an array of ring filters, wherein each ring filter couples an associated reflective silicon optical amplifier (RSOA) to the shared ring mirror and in doing so forms a Verniered ring pair with the shared ring mirror. The resulting system provides a comb source with redundant channels that can provide individual outputs or a shared output. This hybrid laser provides a significant improvement over existing comb-based lasers by providing redundancy for at least one laser channel.
    Type: Application
    Filed: October 13, 2016
    Publication date: September 13, 2018
    Applicant: Oracle International Corporation
    Inventors: Jock T. Bovington, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Publication number: 20180231808
    Abstract: An optical transmitter includes: a set of reflective silicon optical amplifiers (RSOAs), a set of ring modulators, a shared broadband reflector, a set of intermediate waveguides, and a shared waveguide. Each intermediate waveguide channels light from an RSOA in proximity to an associated ring modulator to cause optically coupled light to circulate in the associated ring modulator. The shared waveguide is coupled to the shared broadband reflector, and passes in proximity to the set of ring modulators, so that light circulating in each ring modulator causes optically coupled light to flow in the shared optical waveguide. During operation, each RSOA forms a lasing cavity with the shared broadband reflector, wherein each lasing cavity has a different wavelength, which is determined by a resonance of the associated ring modulator. The different wavelengths are combined in the shared waveguide to produce a combined output.
    Type: Application
    Filed: November 8, 2016
    Publication date: August 16, 2018
    Applicant: Oracle International Corporation
    Inventors: Xuezhe Zheng, Ying Luo, Ashok V. Krishnamoorthy
  • Publication number: 20180231807
    Abstract: The disclosed embodiments provide a laser source comprising a silicon waveguide formed in a silicon layer, and a cascaded array of hybrid distributed feedback (DFB) lasers formed by locating sections of III-V gain material over the silicon waveguide. Each DFB laser in the cascaded array comprises a section of III-V gain material located over the silicon waveguide, wherein the section of III-V gain material includes an active region that generates light, and a Bragg grating located between the III-V gain material and the silicon waveguide. This Bragg grating has a resonance frequency within a gain bandwidth of the section of III-V material and is transparent to frequencies that differ from the resonance frequency. Moreover, each DFB laser has a hybrid mode that resides partially in the III-V gain material and partially in silicon.
    Type: Application
    Filed: November 3, 2016
    Publication date: August 16, 2018
    Applicant: Oracle International Corporation
    Inventors: Xuezhe Zheng, Ying Luo, Ashok V. Krishnamoorthy, Kannan Raj
  • Publication number: 20180191137
    Abstract: An integrated laser that provides multiple outputs includes a reflective silicon optical amplifier (RSOA) having a reflective end with a reflective coating and an interface end. It also includes an optical waveguide optically coupled to the RSOA. A distributed-Bragg-reflector (DBR) ring resonator is also optically coupled to the optical waveguide, wherein the DBR ring resonator partially reflects a wavelength of the optical signal from the optical waveguide, thereby causing balanced light to flow in clockwise and counter-clockwise directions inside the DBR ring resonator. The integrated laser additionally includes an output waveguide having 2*N ends that function as two outputs, wherein the output waveguide is optically coupled to the DBR ring resonator, which causes balanced light to flow in two directions in the output waveguide, thereby causing the 2*N outputs to provide balanced power.
    Type: Application
    Filed: June 23, 2016
    Publication date: July 5, 2018
    Applicant: Oracle International Corporation
    Inventors: Jock T. Bovington, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 10014659
    Abstract: An optical source is described. This optical source includes a set of semiconductor optical amplifiers, with a semiconductor other than silicon, which provides an optical gain medium. In addition, a photonic chip, optically coupled to the set of semiconductor optical amplifiers, includes optical paths. Each of the optical paths includes an optical waveguide and a distributed-Bragg-reflector (DBR) ring resonator. The DBR ring resonator at least partially reflects a given tunable wavelength in an optical signal provided by a given semiconductor optical amplifier. Moreover, the DBR ring resonator includes a different number of grating periods than DBR ring resonators in the remaining optical paths, and the DBR ring resonators in the optical paths have a common radius.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: July 3, 2018
    Assignee: Oracle International Corporation
    Inventors: Jock Bovington, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Publication number: 20180159293
    Abstract: An optical source includes semiconductor optical amplifiers, with a semiconductor other than silicon, which provide an optical gain medium. Moreover, a photonic chip in the optical source, which is optically coupled to the semiconductor optical amplifiers, includes ring resonators that selectively pass corresponding optical signals having carrier wavelengths provided by the semiconductor optical amplifiers, where a given ring resonator and a reflector on one of the semiconductor optical amplifier defines an optical cavity, and the ring resonators have different radii with associated resonance wavelengths corresponding to the carrier wavelengths.
    Type: Application
    Filed: February 18, 2016
    Publication date: June 7, 2018
    Applicant: Oracle International Corporation
    Inventors: Jock T. Bovington, Xuezhe Zheng
  • Patent number: 9983420
    Abstract: In the optical device, a ring-resonator modulator, having an adjustable resonance (center) wavelength, optically couples an optical signal that includes the carrier wavelength from an input optical waveguide to an output optical waveguide. A monitoring mechanism in the optical device, which is optically coupled to the output optical waveguide, monitors a performance metric of an output optical signal from the output waveguide. For example, the monitoring mechanism may monitor: an average optical power associated with the output optical signal, and/or an amplitude of the output optical signal. Moreover, control logic in the optical device adjusts the resonance wavelength based on the monitored performance metric so that the performance metric is optimized.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: May 29, 2018
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Philip Amberg, Eric Y. Chang, Xuezhe Zheng, Frankie Y. Liu, Ronald Ho, Ashok V. Krishnamoorthy
  • Patent number: 9983359
    Abstract: An integrated circuit that includes a wavelength-filter layer stack (which may include silicon oxynitride) and an optical substrate (such as a silicon-on-insulator platform) is described. During operation, an optical signal received from an optical fiber or an optical waveguide is wavelength filtered into a set of wavelength-filter optical waveguides by an optical multiplexer/demultiplexer (such as an Echelle grating and/or an array waveguide grating) in the wavelength-filter layer stack. Then, wavelength-filtered optical signals are optically coupled to the optical substrate, where they are received using photodetectors. Alternatively, modulators in the optical substrate modulate wavelength-filtered modulated optical signals, which are then optically coupled to the set of wavelength-filter optical waveguides in the wavelength-filter layer stack.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 29, 2018
    Assignee: Oracle International Corporation
    Inventors: Ying Luo, Xuezhe Zheng, Jin Yao, Ashok V. Krishnamoorthy
  • Publication number: 20180143461
    Abstract: An optical transmitter includes a reflective semiconductor optical amplifier (RSOA) coupled to an input end of a first optical waveguide. An end of the first optical waveguide provides a transmitter output for the optical transmitter. Moreover, a section of the first optical waveguide between the input end and the output end is optically coupled to a ring modulator that modulates an optical signal based on an electrical input signal. A passive ring filter (or a 1×N silicon-photonic switch and a bank of band reflectors) is connected to provide a mirror that reflects light received from the second optical waveguide back toward the RSOA to form a lasing cavity. Moreover, the ring modulator and the passive ring filter have different sizes, which causes a Vernier effect that provides a large wavelength tuning range for the lasing cavity in response to tuning the ring modulator and the passive ring filter.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 24, 2018
    Applicant: Oracle International Corporation
    Inventors: Xuezhe Zheng, Ying Luo, Jin Yao, Ashok V. Krishnamoorthy
  • Patent number: 9967049
    Abstract: A transceiver separates wavelength-division-multiplexing (WDM) components into two groups, one of which is more sensitive to temperature than the other group. The temperature-sensitive group of optical components is implemented on a first substrate in the transceiver that has a lower thermo-optic coefficient than a second substrate in the transceiver, which contains the group of optical components that is less temperature sensitive. In particular, the first substrate, which may be glass, may include WDM components that convey optical signals having multiple carrier wavelengths. Moreover, the second substrate, such as a silicon substrate (e.g., a silicon-on-insulator platform), may include multiple parallel optical paths with optical components, in which a given optical path conveys an optical signal having a given carrier wavelength.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: May 8, 2018
    Assignee: Oracle International Corporation
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9964702
    Abstract: The disclosed embodiments provide a system that implements an optical interface. The system includes a semiconductor chip with a silicon layer, which includes a silicon waveguide, and an interface layer (which can be comprised of SiON) disposed over the silicon layer, wherein the interface layer includes an interface waveguide. The system also includes an optical coupler that couples an optical signal from the silicon waveguide in the silicon layer to the interface waveguide in the interface layer, wherein the interface waveguide channels the optical signal in a direction parallel to a top surface of the semiconductor chip. The system additionally includes a mirror, which is oriented to reflect the optical signal from the interface waveguide in a surface-normal direction so that the optical signal exits the top surface of the semiconductor chip.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 8, 2018
    Assignee: Oracle International Corporation
    Inventors: Ying Luo, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Publication number: 20180115139
    Abstract: An optical source is described. This optical source includes a set of semiconductor optical amplifiers, with a semiconductor other than silicon, which provides an optical gain medium. In addition, a photonic chip, optically coupled to the set of semiconductor optical amplifiers, includes optical paths. Each of the optical paths includes an optical waveguide and a distributed-Bragg-reflector (DBR) ring resonator. The DBR ring resonator at least partially reflects a given tunable wavelength in an optical signal provided by a given semiconductor optical amplifier. Moreover, the DBR ring resonator includes a different number of grating periods than DBR ring resonators in the remaining optical paths, and the DBR ring resonators in the optical paths have a common radius.
    Type: Application
    Filed: June 15, 2016
    Publication date: April 26, 2018
    Applicant: Oracle International Corporation
    Inventors: Jock Bovington, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Publication number: 20180106964
    Abstract: The disclosed embodiments provide a system that implements an optical interface. The system includes a semiconductor chip with a silicon layer, which includes a silicon waveguide, and an interface layer (which can be comprised of SiON) disposed over the silicon layer, wherein the interface layer includes an interface waveguide. The system also includes an optical coupler that couples an optical signal from the silicon waveguide in the silicon layer to the interface waveguide in the interface layer, wherein the interface waveguide channels the optical signal in a direction parallel to a top surface of the semiconductor chip. The system additionally includes a mirror, which is oriented to reflect the optical signal from the interface waveguide in a surface-normal direction so that the optical signal exits the top surface of the semiconductor chip.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 19, 2018
    Applicant: Oracle International Corporation
    Inventors: Ying Luo, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9939663
    Abstract: A dual-ring-modulated laser includes a gain medium having a reflective end coupled to a gain-medium reflector and an output end coupled to a reflector circuit to form a lasing cavity. This reflector circuit comprises: a first ring modulator; a second ring modulator; and a shared waveguide that optically couples the first and second ring modulators. The first and second ring modulators have resonance peaks, which are tuned to have an alignment separation from each other. During operation, the first and second ring modulators are driven in opposing directions based on the same electrical input signal, so the resonance peaks of the first and second ring modulators shift wavelengths in the opposing directions during modulation. The modulation shift for each of the resonance peaks equals the alignment separation, so the resonance peaks interchange positions during modulation to cancel out reflectivity changes in the lasing cavity caused by the modulation.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: April 10, 2018
    Assignee: Oracle International Corporation
    Inventors: Ying Luo, Shiyun Lin, Ashok V. Krishnamoorthy, Jock T. Bovington, Xuezhe Zheng
  • Publication number: 20180095224
    Abstract: An integrated circuit that includes a wavelength-filter layer stack (which may include silicon oxynitride) and an optical substrate (such as a silicon-on-insulator platform) is described. During operation, an optical signal received from an optical fiber or an optical waveguide is wavelength filtered into a set of wavelength-filter optical waveguides by an optical multiplexer/demultiplexer (such as an Echelle grating and/or an array waveguide grating) in the wavelength-filter layer stack. Then, wavelength-filtered optical signals are optically coupled to the optical substrate, where they are received using photodetectors. Alternatively, modulators in the optical substrate modulate wavelength-filtered modulated optical signals, which are then optically coupled to the set of wavelength-filter optical waveguides in the wavelength-filter layer stack.
    Type: Application
    Filed: August 24, 2017
    Publication date: April 5, 2018
    Applicant: Oracle International Corporation
    Inventors: Ying Luo, Xuezhe Zheng, Jin Yao, Ashok V. Krishnamoorthy
  • Patent number: 9933574
    Abstract: The disclosed embodiments relate to a system for assembling an optical connector. During the assembly process, the system first fabricates the optical connector, wherein the optical connector is precut and includes a fiber coupler for connecting to an external optical fiber. Next, the system bonds the optical connector to a photonic chip, wherein the photonic chip includes an optical coupler, which is coupled to one or more optical components within the photonic chip. Finally, after the optical connector is bonded to the photonic chip, the system uses a laser to write a coupling waveguide in the optical connector, wherein the coupling waveguide is routed through the optical connector to connect the optical coupler in the photonic chip with the fiber coupler for connecting to the external optical fiber.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: April 3, 2018
    Assignee: Oracle International Corporation
    Inventors: Chaoqi Zhang, Hiren D. Thacker, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9935424
    Abstract: An integrated circuit includes an optical source (such as a laser) with a lens, which is disposed on an isolator. This isolator is disposed on a semiconductor layer in a silicon-on-insulator (SOI) platform that includes an optical coupler and an optical waveguide. During operation, the optical source generates an optical signal that propagates toward the isolator so that the lens focuses the optical signal. Furthermore, the isolator reduces or eliminates back reflection of the optical signal toward the optical source, and the optical coupler couples the optical signal into the optical waveguide.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 3, 2018
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy, Kannan Raj
  • Publication number: 20180083420
    Abstract: A laser includes a reflective gain medium (RGM) comprising an optical gain material coupled with an associated reflector. The RGM is coupled to a spot-size converter (SSC), which optically couples the RGM to an optical reflector through a silicon waveguide. The SSC converts an optical mode-field size of the RGM to an optical mode-field size of the silicon waveguide. A negative thermo-optic coefficient (NTOC) waveguide is fabricated on top of the SSC. In this way, an optical signal, which originates from the RGM, passes into the SSC, is coupled into the NTOC waveguide, passes through the NTOC waveguide, and is coupled back into the SSC before passing into the silicon waveguide. During operation, the RGM, the spot-size converter, the NTOC waveguide, the silicon waveguide and the silicon mirror collectively form a lasing cavity for the athermal laser. Finally, a laser output is optically coupled to the lasing cavity.
    Type: Application
    Filed: January 12, 2017
    Publication date: March 22, 2018
    Applicant: Oracle International Corporation
    Inventors: Jock T. Bovington, Stevan S. Djordjevic, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9923335
    Abstract: A laser includes a reflective gain medium (RGM) comprising an optical gain material coupled with an associated reflector. The RGM is coupled to a spot-size converter (SSC), which optically couples the RGM to an optical reflector through a silicon waveguide. The SSC converts an optical mode-field size of the RGM to an optical mode-field size of the silicon waveguide. A negative thermo-optic coefficient (NTOC) waveguide is fabricated on top of the SSC. In this way, an optical signal, which originates from the RGM, passes into the SSC, is coupled into the NTOC waveguide, passes through the NTOC waveguide, and is coupled back into the SSC before passing into the silicon waveguide. During operation, the RGM, the spot-size converter, the NTOC waveguide, the silicon waveguide and the silicon mirror collectively form a lasing cavity for the athermal laser. Finally, a laser output is optically coupled to the lasing cavity.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: March 20, 2018
    Assignee: Oracle International Corporation
    Inventors: Jock T. Bovington, Stevan S. Djordjevic, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Publication number: 20180067016
    Abstract: A reflectivity test circuit is described. The reflectivity test circuit includes a symmetric structure that cancels errors in the reflectivity measurements. In particular, the reflectivity test circuit includes an optical waveguide that is optically coupled to two optical ports and two optical couplers. The optical couplers are optically coupled to adjacent optical waveguides, at least one of which is optically coupled to a third optical port and the mirror. Moreover, a length of the optical waveguide is chosen to match the round-trip optical path length in at least the one of the adjacent optical waveguides. During operation, control logic determines the reflectivity of the mirror based at least on a ratio of an optical power measured on one of the two optical ports to an input optical power on the third optical port.
    Type: Application
    Filed: November 6, 2017
    Publication date: March 8, 2018
    Applicant: Oracle International Corporation
    Inventors: Jock T. Bovington, Xuezhe Zheng