Patents by Inventor Xunyuan Zhang

Xunyuan Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8859419
    Abstract: One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a barrier layer in the trench/via, forming a copper-based seed layer on the barrier layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure. A device disclosed herein includes a layer of insulating material, a copper-based conductive structure positioned in a trench/via within the layer of insulating material and a copper-based silicon or germanium nitride layer positioned between the copper-based conductive structure and the layer of insulating material.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: October 14, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Larry Zhao, Ming He, Sean Lin, John Iacoponi, Errol Todd Ryan
  • Publication number: 20140291847
    Abstract: One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a barrier system comprised of at least one barrier material and at least two metallic elements, and performing a heating process to form a metal alloy comprised of the at least two metallic elements in the barrier system. Also disclosed is a device that comprises a trench/via in a layer of insulating material, a barrier system positioned in the trench/via, wherein the barrier system comprises at least one barrier material and a metal alloy comprised of at least two metallic elements that are comprised of materials other than the at least one barrier material, and a conductive structure positioned in the trench/via above the barrier system.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Hoon Kim, Vivian W. Ryan
  • Publication number: 20140264876
    Abstract: A semiconductor device includes a recess defined in a dielectric layer and an interconnect structure defined in the recess. The interconnect structure includes a first barrier layer lining the recess, the first barrier layer including an alloy of tantalum and a first transition metal other than tantalum, wherein a first interface between the first barrier layer and the dielectric layer has a first stress level. A second barrier layer is positioned on the first barrier layer, the second barrier layer including at least one of tantalum and tantalum nitride, wherein a second interface between the second barrier layer and the first barrier layer has a second stress level that is less than the first stress level. The interconnect structure further includes a fill material substantially filling the recess.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Publication number: 20140252617
    Abstract: A process of modulating the thickness of a barrier layer deposited on the sidewalls and floor of a recessed feature in a semiconductor substrate is disclosed. The process includes altering the surface of the conductive feature on which the barrier layer is deposited by annealing in a reducing atmosphere and optionally additionally, silylating the dielectric surface that forms the sidewalls of the recessed feature.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Errol Todd RYAN, Xunyuan Zhang
  • Publication number: 20140252616
    Abstract: A trench in an inter-layer dielectric formed on a semiconductor substrate is defined by a bottom and sidewalls. A copper barrier lines the trench with a copper-growth-promoting liner over the barrier. The trench has bulk copper filling it, and includes voids in the copper. The copper with voids is removed, including from the sidewalls, leaving a void-free copper portion at the bottom. Immersion in an electroless copper bath promotes upward growth of copper on top of the void-free copper portion without inward sidewall copper growth, resulting in a void-free copper fill of the trench.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Inventors: Sean X. Lin, Xunyuan Zhang, Ming HE, Larry Zhao, John Iacoponi, Kunaljeet Tanwar
  • Publication number: 20140246775
    Abstract: One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a non-continuous layer comprised of a plurality of spaced-apart conductive structures on the layer of insulating material in the trench/via, wherein portions of the layer of insulating material not covered by the plurality of spaced-apart conductive structures remain exposed, forming at least one barrier layer on the non-continuous layer, wherein the barrier layer contacts the spaced-apart conductive structures and the exposed portions of the layer of insulating material, forming at least one liner layer above the barrier layer, and forming a conductive structure in the trench/via above the liner layer.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Vivian W. Ryan, Xunyuan Zhang
  • Publication number: 20140227872
    Abstract: One illustrative method disclosed herein includes performing a first etching process to define a via opening in a layer of insulating material, performing at least one process operation to form a sacrificial liner layer on the sidewalls of the via opening, performing a second etching process to define a trench in the layer of insulating material, wherein the sacrificial liner layer is exposed to the second etching process, after performing the second etching process, performing a third etching process to remove the sacrificial liner layer and, after performing the third etching process, forming a conductive structure in at least the via opening and the trench.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Nicholas V. LiCausi, Errol Todd Ryan
  • Publication number: 20140217588
    Abstract: One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a barrier layer in the trench/via, forming a copper-based seed layer on the barrier layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure. A device disclosed herein includes a layer of insulating material, a copper-based conductive structure positioned in a trench/via within the layer of insulating material and a copper-based silicon or germanium nitride layer positioned between the copper-based conductive structure and the layer of insulating material.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Xunyuan Zhang, Larry Zhao, Ming He, Sean Lin, John Iacoponi, Errol Todd Ryan
  • Publication number: 20140217591
    Abstract: A semiconductor device includes a dielectric layer positioned above a substrate of the semiconductor device and a recess defined in the dielectric layer. An adhesion barrier layer is positioned on and in direct contact with at least the sidewalls of the recess, a barrier layer interface being defined where the adhesion barrier layer directly contacts the dielectric layer. A stress-reducing barrier layer is positioned adjacent to the adhesion barrier layer, wherein the stress-reducing barrier layer is adapted to reduce a stress level across the barrier layer interface from a first stress level to a second stress level that is less than the first stress level. At least one layer of a conductive fill material is positioned over the stress-reducing barrier layer, the at least one layer of the conductive fill material substantially filling the recess.
    Type: Application
    Filed: April 8, 2014
    Publication date: August 7, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Publication number: 20140209563
    Abstract: Greater planarity is achieved between surfaces of a conductive structure and a layer within which the conductive structure resides. A portion of the conductive structure protruding above the surface of the layer is selectively oxidized, at least in part, to form an oxidized portion. The oxidized portion is then removed, at least partially, to facilitate achieving greater planarity. The protruding portions may optionally be formed by selectively disposing conductive material over the conductive structure, when that the conductive structure is initially recessed below the surface of the layer. A further embodiment includes selectively oxidizing a portion of the conductive structure below the surface of the layer, removing at least some of the oxidized portion so that an upper surface of the conductive structure is below the upper surface of the layer, and planarizing the upper surface of the layer to the upper surface of the conductive structure.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: GLOBALFOUNDRIES, INC.
    Inventors: Xunyuan ZHANG, Xiuyu CAI
  • Publication number: 20140210088
    Abstract: A semiconductor device includes a recess defined in a dielectric layer, the recess having an upper sidewall portion extending to an upper corner of the recess and a lower sidewall portion below the upper sidewall portion. An interconnect structure is positioned in the recess. The interconnect structure includes a continuous liner layer having upper and lower layer portions positioned laterally adjacent to the upper and lower sidewall portions, respectively. The upper layer portion includes an alloy of a first transition metal and a second transition metal and the lower layer portion includes the second transition metal but not the first transition metal. The interconnect structure also includes a fill material substantially filling the recess, wherein the second transition metal has a higher wettability for the fill material than the alloy.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Hoon Kim, Vivian W. Ryan
  • Patent number: 8791014
    Abstract: Disclosed herein are various methods of forming copper-based conductive structures on semiconductor devices, such as transistors. In one example, the method involves performing a first etching process through a patterned metal hard mask layer to define an opening in a layer of insulating material, performing a second etching process through the opening in the layer of insulating material that exposes a portion of an underlying copper-containing structure, performing a wet etching process to remove the patterned metal hard mask layer, performing a selective metal deposition process through the opening in the layer of insulating material to selectively form a metal region on the copper-containing structure and, after forming the metal region, forming a copper-containing structure in the opening above the metal region.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: July 29, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Hoon Kim, Chanro Park
  • Patent number: 8772158
    Abstract: The present disclosure is generally directed to multi-layer barrier layer stacks for interconnect structures that may be used to reduce mechanical stress levels between the interconnect structure and a dielectric material layer in which the interconnect structure is formed. One illustrative method disclosed herein includes forming a recess in a dielectric layer of a substrate and forming an adhesion barrier layer including an alloy of tantalum and at least one transition metal other than tantalum to line the recess, wherein forming the adhesion barrier layer includes creating a first stress level across a first interface between the adhesion barrier layer and the dielectric layer. The method also includes forming a stress-reducing barrier layer including tantalum over the adhesion barrier layer, wherein the stress-reducing barrier layer reduces the first stress level to a second stress level less than the first stress level, and filling the recess with a fill layer.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: July 8, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Patent number: 8753975
    Abstract: A method includes forming a trench/via in a layer of insulating material, forming a first layer comprised of silicon or germanium on the insulating material in the trench/via, forming a copper-based seed layer on the first layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 17, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Larry Zhao, Ming He, Sean Lin, John Iacoponi, Errol Todd Ryan
  • Publication number: 20140145332
    Abstract: One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a graphene liner layer in at least the trench/via, forming a copper-based seed layer on the graphene liner layer, depositing a bulk copper-based material on the copper-based seed layer so as to overfill the trench/via, and performing at least one chemical mechanical polishing process to remove at least excess amounts of the bulk copper-based material and the copper-based seed layer positioned outside of the trench/via to thereby define a copper-based conductive structure with a graphene liner layer positioned between the copper-based conductive structure and the layer of insulating material.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 29, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Errol T. Ryan, Zoran Krivokapic, Xunyuan Zhang, Christian Witt, Ming He, Larry Zhao
  • Publication number: 20140138779
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a sacrificial gate structure over a semiconductor substrate. A spacer is formed around the sacrificial gate structure and a dielectric material is deposited over the spacer and semiconductor substrate. The method includes selectively etching the spacer to form a trench between the sacrificial gate structure and the dielectric material. The trench is bounded by a trench surface upon which a replacement spacer material is deposited. The method merges an upper region of the replacement spacer material to enclose a void within the replacement spacer material.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: GLOBALFOUNDRIES, INC.
    Inventors: Ruilong Xie, Xiuyu Cai, Xunyuan Zhang
  • Patent number: 8728931
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate. An adhesion barrier layer is formed to line the recess. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. The recess is filled with a fill layer.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 20, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Patent number: 8722534
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate, forming a first transition metal layer in the recess on corner portions of the recess, and forming a second transition metal layer in the recess over the first transition metal layer to line the recess. The method further includes filling the recess with a fill layer and annealing the substrate so that the first transition metal layer and the second transition metal layer form an alloy portion proximate the corner portions during the annealing, the alloy portion having a reduced wettability for a material of the fill layer than the second transition metal. Additionally, the method includes polishing the substrate to remove portions of the fill layer extending above the recess.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: May 13, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xunyuan Zhang, Hoon Kim, Vivian W. Ryan
  • Publication number: 20140110798
    Abstract: One method disclosed herein includes forming at least one sacrificial sidewall spacer adjacent a sacrificial gate structure that is formed above a semiconducting substrate, removing at least a portion of the sacrificial gate structure to thereby define a gate cavity that is laterally defined by the sacrificial spacer, forming a replacement gate structure in the gate cavity, removing the sacrificial spacer to thereby define a spacer cavity adjacent the replacement gate structure, and forming a low-k spacer in the spacer cavity. A novel device disclosed herein includes a gate structure positioned above a semiconducting substrate, wherein the gate insulation layer has two upstanding portions that are substantially vertically oriented relative to an upper surface of the substrate. The device further includes a low-k sidewall spacer positioned adjacent each of the vertically oriented upstanding portions of the gate insulation layer.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Xiuyu Cai, Ruilong Xie, Xunyuan Zhang
  • Patent number: 8704372
    Abstract: Integrated circuits, a process for recessing an embedded copper feature within a substrate, and a process for recessing an embedded copper interconnect within an interlayer dielectric substrate of an integrated circuit are provided. In an embodiment, a process for recessing an embedded copper feature, such as an embedded copper interconnect, within a substrate, such as an interlayer dielectric substrate, includes providing a substrate having an embedded copper feature disposed therein. The embedded copper feature has an exposed surface and the substrate has a substrate surface adjacent to the exposed surface of the embedded copper feature. The exposed surface of the embedded copper feature is nitrided to form a layer of copper nitride in the embedded copper feature. Copper nitride is selectively etched from the embedded copper feature to recess the embedded copper feature within the substrate.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: April 22, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Errol T. Ryan, Xunyuan Zhang