Patents by Inventor Yan Ming Jonathan Goh

Yan Ming Jonathan Goh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932213
    Abstract: Systems and methods are provided for controlling one or more brakes of the vehicle. The system may include a processor and a memory in communication with the processor with a brake control module. The brake control module includes instructions that, when executed by the processor, cause the processor to control the one or more brakes of the vehicle when the vehicle is in a first mode using a brake-by-wire system. When the vehicle is in a second mode, control the brake-by-wire system such that the one or more brakes of the vehicle are controlled using a mechanical braking system and the brake-by-wire system.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: March 19, 2024
    Assignee: Toyota Research Institute, Inc.
    Inventors: Yan Ming Jonathan Goh, Alexander R. Green, Michael Thompson, Kazunori Nimura
  • Publication number: 20240083413
    Abstract: Systems and methods of controlling a vehicle in a stable drift are provided. With the goal of enhancing the driver experience, the disclosed drift control systems provide an interactive drift driving experience for the driver of a vehicle. In some embodiments, a driver is allowed to take manual control of a vehicle after a stable drift is initiated. For safety reasons, an assisted driving system may provide corrective assistance to prevent the vehicle from entering an unstable/unsafe drift. In other embodiments, an autonomous driving system retains control of the vehicle throughout the drift. However, the driver may perform “simulated drift maneuvers” such as counter-steering, and clutch kicking in order to communicate their desire to drift more or less aggressively. Accordingly, the autonomous driving system will effectuate the driver's communicated desire in a manner that keeps the vehicle in a safe/stable drift.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: AVINASH BALACHANDRAN, YAN MING JONATHAN GOH, JOHN SUBOSITS, MICHAEL THOMPSON, ALEXANDER R. GREEN
  • Publication number: 20240083498
    Abstract: System, methods, and other embodiments described herein relate to steering a vehicle based on an intended yaw rate during loss of traction. In one arrangement, a method for steering a vehicle during loss of traction is disclosed. The method includes detecting a slipping tire of a vehicle losing traction with a road. The method also includes decoupling control of a pair of front tires of the vehicle by a steering wheel of the vehicle. The method also includes identifying an intended yaw rate for controlling the vehicle by detecting an angle of the steering wheel while the slipping tire does not have traction. The method further includes steering the vehicle separately from an input of a steering wheel of the vehicle to cause intended yaw rate.
    Type: Application
    Filed: January 24, 2023
    Publication date: March 14, 2024
    Applicants: Toyota Research Institute, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Yasuda, Manuel Ludwig Kuehner, Yan Ming Jonathan Goh
  • Publication number: 20240083497
    Abstract: System, methods, and other embodiments described herein relate to steering a vehicle based during loss of traction. In one arrangement, a method for steering a vehicle during loss of traction is disclosed. The method includes, responsive to detecting a slipping tire of a vehicle losing traction with a road, automatically steering the vehicle separately from an input of a steering wheel of the vehicle to cause the vehicle to follow a path. The method also includes decoupling control of a pair of front tires of the vehicle by the steering wheel. The method further includes rotating, independently of an input to the steering wheel and in parallel with steering the vehicle, the steering wheel to match an actual yaw of the vehicle.
    Type: Application
    Filed: January 24, 2023
    Publication date: March 14, 2024
    Applicants: Toyota Research Institute, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Yasuda, Manuel Ludwig Kuehner, Yan Ming Jonathan Goh
  • Publication number: 20240034302
    Abstract: System, methods, and other embodiments described herein relate to adjusting a prediction model for control at handling limits associated with a projected trajectory during automated driving. In one embodiment, a method includes adjusting parameters of a prediction model using friction estimates and sideslip costs associated with a projected trajectory of a vehicle, the friction estimates being derived from Kalman filtering. The method also includes scaling, using the prediction model, handling limits of the vehicle for the projected trajectory according to a friction circle. The method also includes generating, by the prediction model, vehicle dynamics using a load transfer and a brake distribution, the vehicle dynamics being associated with estimated road conditions and the handling limits. The method also includes outputting, by the prediction model using the vehicle dynamics, a driving command to the vehicle for the projected trajectory.
    Type: Application
    Filed: September 21, 2022
    Publication date: February 1, 2024
    Applicants: Toyota Research Institute, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: James Andrew Dallas, Michael Thompson, Yan Ming Jonathan Goh, Avinash Balachandran
  • Publication number: 20240034335
    Abstract: Systems and methods are provided for dynamic driver training, and may include: a communication interface to receive sensor data, the sensor data comprising driver biometric data and driver performance data for a driver operating a vehicle; a driver inference circuit to infer a skill level and emotional state of the driver operating the vehicle; and a driver training circuit to, based on the inferred skill level and emotional state of the driver operating the vehicle, dynamically adjust a driver training level for the driver while the driver is operating the vehicle.
    Type: Application
    Filed: July 26, 2022
    Publication date: February 1, 2024
    Applicants: TOYOTA RESEARCH INSTITUTE, INC., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: MINORU BRANDON ARAKI, Michael Thompson, James Dallas, Yan Ming Jonathan Goh, Avinash Balachandran
  • Patent number: 11858497
    Abstract: Systems and methods of controlling a vehicle in a stable drift are provided. With the goal of enhancing the driver experience, the disclosed drift control systems provide an interactive drift driving experience for the driver of a vehicle. In some embodiments, a driver is allowed to take manual control of a vehicle after a stable drift is initiated. For safety reasons, an assisted driving system may provide corrective assistance to prevent the vehicle from entering an unstable/unsafe drift. In other embodiments, an autonomous driving system retains control of the vehicle throughout the drift. However, the driver may perform “simulated drift maneuvers” such as counter-steering, and clutch kicking in order to communicate their desire to drift more or less aggressively. Accordingly, the autonomous driving system will effectuate the driver's communicated desire in a manner that keeps the vehicle in a safe/stable drift.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: January 2, 2024
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Avinash Balachandran, Yan Ming Jonathan Goh, John Subosits, Michael Thompson, Alexander R. Green
  • Patent number: 11845457
    Abstract: A system for training an operator of a vehicle includes a processor and a memory in communication with the processor, which includes a safety module and a training module. The safety module has instructions that, when executed by the processor, cause the processor to determine when the vehicle is operating within a safe area based on at least one of: a location of the vehicle and a location of one or more objects with respect to the vehicle. The training module has instructions that, when executed by the processor, cause the processor to apply at least one brake of the vehicle when the vehicle is operating within the safe area to cause the vehicle to engage in an oversteer event, and collect operator response information when the vehicle engages in the oversteer event.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: December 19, 2023
    Assignee: Toyota Research Institute, Inc.
    Inventors: John Subosits, Yan Ming Jonathan Goh, Michael Thompson, Alexander R. Green, Avinash Balachandran
  • Patent number: 11834026
    Abstract: Systems and methods for controlling a vehicle may include receiving sensor data from a plurality of sensors, the sensor data including vehicle parameter information for the vehicle; using the sensor data to determine a vehicle state for a vehicle negotiating a corner, wherein the vehicle state comprises information regarding a magnitude of an effective understeer gradient for the vehicle; computing a yaw moment required to correct the effective understeer gradient based on the magnitude of the effective understeer gradient; and applying a brake torque to a single wheel of the vehicle, wherein an amount of brake torque applied is sufficient to lock up the single wheel to create a yaw moment on the vehicle to achieve the computed yaw moment required to correct the effective understeer gradient.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: December 5, 2023
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Yan Ming Jonathan Goh, John Subosits, Michael Thompson, Alexander R. Green, Avinash Balachandran
  • Publication number: 20230365108
    Abstract: Systems and Methods for controlling an autonomous vehicle, may include: receiving sensor data, the sensor data comprising vehicle parameter information for the autonomous vehicle; using the sensor data to determine a vehicle state for the autonomous vehicle, wherein the vehicle state comprises information regarding a magnitude of an actual or predicted effective understeer gradient for the vehicle; computing a yaw moment required to correct the effective understeer gradient based on the magnitude of the effective understeer gradient; and determining a combination of one or more vehicle control inputs, including applying a brake torque, to correct the effective understeer gradient; applying the brake torque to a single wheel of the vehicle, wherein an amount of brake torque applied is sufficient to lock up the single wheel to create a yaw moment on the vehicle to achieve the computed yaw moment required to correct the effective understeer gradient.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: YAN MING JONATHAN GOH, JOHN SUBOSITS, MICHAEL THOMPSON, ALEXANDER R. GREEN, AVINASH BALACHANDRAN
  • Patent number: 11807206
    Abstract: Systems, methods, and other embodiments described herein relate to emergency lateral maneuvers using brake-induced tire sliding. In one embodiment, a method includes determining a vehicle state for a vehicle according to sensor data about a surrounding environment. The method includes computing, using the sensor data and the vehicle state, lateral accelerations that are yaw-free for the vehicle. The method includes, in response to detecting that the vehicle state is associated with an emergency event, selecting a maneuver from the lateral accelerations. The method includes controlling the vehicle according to the maneuver.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: November 7, 2023
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Yan Ming Jonathan Goh, John Subosits, Michael Thompson, Alexander R. Green, Avinash Balachandran
  • Patent number: 11752989
    Abstract: Systems and Methods for controlling an autonomous vehicle, may include: receiving sensor data, the sensor data comprising vehicle parameter information for the autonomous vehicle; using the sensor data to determine a vehicle state for the autonomous vehicle, wherein the vehicle state comprises information regarding a magnitude of an actual or predicted effective understeer gradient for the vehicle; computing a yaw moment required to correct the effective understeer gradient based on the magnitude of the effective understeer gradient; and determining a combination of one or more vehicle control inputs, including applying a brake torque, to correct the effective understeer gradient; applying the brake torque to a single wheel of the vehicle, wherein an amount of brake torque applied is sufficient to lock up the single wheel to create a yaw moment on the vehicle to achieve the computed yaw moment required to correct the effective understeer gradient.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: September 12, 2023
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Yan Ming Jonathan Goh, John Subosits, Michael Thompson, Alexander R. Green, Avinash Balachandran
  • Publication number: 20230022906
    Abstract: Systems and methods of autonomously controlling a vehicle across the grip driving and drift driving operating ranges, are provided. The contemplated autonomous control can be effectuated using a closed-loop control system. In some embodiments, closed-loop control may be accomplished by deriving control laws involving sideslip angle, yaw rate, wheel speed, and other vehicle states. These control laws may be used to control the vehicle in a stable drift condition.
    Type: Application
    Filed: July 15, 2021
    Publication date: January 26, 2023
    Inventors: AVINASH BALACHANDRAN, YAN MING JONATHAN GOH, JOHN SUBOSITS, MICHAEL THOMPSON, ALEXANDER R. GREEN
  • Publication number: 20220396259
    Abstract: Systems and methods of controlling a vehicle in a stable drift are provided. With the goal of enhancing the driver experience, the disclosed drift control systems provide an interactive drift driving experience for the driver of a vehicle. In some embodiments, a driver is allowed to take manual control of a vehicle after a stable drift is initiated. For safety reasons, an assisted driving system may provide corrective assistance to prevent the vehicle from entering an unstable/unsafe drift. In other embodiments, an autonomous driving system retains control of the vehicle throughout the drift. However, the driver may perform “simulated drift maneuvers” such as counter-steering, and clutch kicking in order to communicate their desire to drift more or less aggressively. Accordingly, the autonomous driving system will effectuate the driver's communicated desire in a manner that keeps the vehicle in a safe/stable drift.
    Type: Application
    Filed: June 14, 2021
    Publication date: December 15, 2022
    Inventors: Avinash Balachandran, Yan Ming Jonathan Goh, John Subosits, Michael Thompson, Alexander R. Green
  • Publication number: 20220379858
    Abstract: Systems and methods for controlling a vehicle may include receiving sensor data from a plurality of sensors, the sensor data including vehicle parameter information for the vehicle; using the sensor data to determine a vehicle state for a vehicle negotiating a corner, wherein the vehicle state comprises information regarding a magnitude of an effective understeer gradient for the vehicle; computing a yaw moment required to correct the effective understeer gradient based on the magnitude of the effective understeer gradient; and applying a brake torque to a single wheel of the vehicle, wherein an amount of brake torque applied is sufficient to lock up the single wheel to create a yaw moment on the vehicle to achieve the computed yaw moment required to correct the effective understeer gradient.
    Type: Application
    Filed: June 1, 2021
    Publication date: December 1, 2022
    Inventors: YAN MING JONATHAN GOH, JOHN SUBOSITS, MICHAEL THOMPSON, ALEXANDER R. GREEN, AVINASH BALACHANDRAN
  • Publication number: 20220379895
    Abstract: System, methods, and other embodiments described herein relate to skid recovery for a vehicle. In one embodiment, a method for controlling a vehicle during skid includes obtaining data indicating a skid condition of the vehicle, determining whether the skid condition can be corrected by counter-steering, and executing an intervention when the skid condition cannot be corrected by counter-steering, the intervention including inducing slippage in front wheels of the vehicle to change a direction and/or magnitude of lateral forces at the front wheels.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Inventors: Yan Ming Jonathan Goh, John Subosits, Michael Thompson, Alexander R. Green, Avinash Balachandran, Hanh Nguyen
  • Publication number: 20220379855
    Abstract: Systems and Methods for controlling an autonomous vehicle, may include: receiving sensor data, the sensor data comprising vehicle parameter information for the autonomous vehicle; using the sensor data to determine a vehicle state for the autonomous vehicle, wherein the vehicle state comprises information regarding a magnitude of an actual or predicted effective understeer gradient for the vehicle; computing a yaw moment required to correct the effective understeer gradient based on the magnitude of the effective understeer gradient; and determining a combination of one or more vehicle control inputs, including applying a brake torque, to correct the effective understeer gradient; applying the brake torque to a single wheel of the vehicle, wherein an amount of brake torque applied is sufficient to lock up the single wheel to create a yaw moment on the vehicle to achieve the computed yaw moment required to correct the effective understeer gradient.
    Type: Application
    Filed: June 1, 2021
    Publication date: December 1, 2022
    Inventors: YAN MING JONATHAN GOH, JOHN SUBOSITS, MICHAEL THOMPSON, ALEXANDER R. GREEN, AVINASH BALACHANDRAN
  • Patent number: 11506250
    Abstract: Systems and methods of controlling a clutch in a vehicle are provided. With the goal of enabling autonomous/assisted control of the clutch by an electronic control unit while preserving the familiar mechanical feeling at the clutch pedal that driving enthusiasts prefer, embodiments of the disclosed technology use a shuttle valve to blend control of clutch engagement between a driver and an ECU. In these embodiments, a clutch pedal in the vehicle may be mechanically connected to a piston in a first hydraulic cylinder (just like in a traditional mechanical/hydraulic clutch actuation system), and an ECU may actuate a second hydraulic cylinder. Accordingly, a shuttle valve may be used to route the fluid coming from the cylinder with the greater pressure (i.e. the driver actuated cylinder or the ECU actuated cylinder), to a third hydraulic cylinder which adjusts engagement of a clutch by a mechanical linkage.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: November 22, 2022
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Alexander R. Green, Michael Thompson, Yan Ming Jonathan Goh, John Subosits, Avinash Balachandran
  • Patent number: 11498564
    Abstract: Coordinates of a point, representing a current pair of states of a vehicle, can be determined to be outside of a first curve. An interior of the first curve, representing a first region of operation of the vehicle, can be characterized by values of forces produced by tires being less than a saturation force. A distance between the point and a second curve can be determined. An interior of the second curve, representing a second region of operation of the vehicle, can be characterized by an ability of an operation of a control system to cause the vehicle to change from being operated in the current pair of states to being operated in the first region of operation. A manner in which the vehicle changes from being operated in the current pair of states to being operated in a different pair of states can be controlled based on the distance.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: November 15, 2022
    Assignee: Toyota Research Institute, Inc.
    Inventors: Yan Ming Jonathan Goh, Avinash Balachandran
  • Patent number: 11479241
    Abstract: System, methods, and other embodiments described herein relate to stabilizing a vehicle. In one embodiment, a method for stabilizing a vehicle with a drivetrain having a clutch includes obtaining data indicating one or more aspects of a turning condition of the vehicle, detecting that a hazard state exists based on a comparison of one or more parameters of the turning condition against one or more predetermined thresholds, and executing a clutch kick in response to detecting the hazard state. The clutch kick includes disengaging the clutch and rapidly reengaging the clutch.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: October 25, 2022
    Assignee: Toyota Research Institute, Inc.
    Inventors: John Subosits, Yan Ming Jonathan Goh, Michael Thompson, Alexander R. Green, Avinash Balachandran