Patents by Inventor Yanbo Wang

Yanbo Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9583175
    Abstract: An apparatus includes a first circuit and a second circuit. The first circuit may be configured to (a) buffer write signals presented on a data bus connected between a memory channel and a memory controller, (b) buffer read signals presented on the data bus and (c) condition the write signals. The conditioning may be implemented by (i) converting the write signals to a first differential write signal on a first differential write line and a second differential write signal on a second differential write line and (ii) connecting (a) a negative impedance and (b) a combined resistive and capacitive load between the first and second differential write lines. The second circuit may be configured to (a) convert the first and the second differential write signals to a single-ended write signal and (b) present the single-ended write signal to the data bus.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: February 28, 2017
    Assignee: INTEGRATED DEViCE TECHNOLOGY, INC.
    Inventors: Praveen Rajan Singh, Yanbo Wang
  • Patent number: 9580325
    Abstract: A process for producing a highly oriented graphene film (HOGF), comprising: (a) preparing a graphene oxide (GO) dispersion having GO sheets dispersed in a fluid medium; (b) dispensing and depositing the dispersion onto a surface of a supporting substrate to form a layer of GO, wherein the dispensing and depositing procedure includes subjecting the dispersion to an orientation-inducing stress; (c) removing the fluid medium to form a dried layer of GO having an inter-plane spacing d002 of 0.4 nm to 1.2 nm; (d) slicing the dried layer of GO into multiple pieces of dried GO and stacking at least two pieces of dried GO to form a mass of multiple pieces of GO; and (f) heat treating the mass under an optional first compressive stress to produce the HOGF at a first heat treatment temperature higher than 100° C. to an extent that an inter-plane spacing d002 is decreased to a value less than 0.4 nm.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: February 28, 2017
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z Jang, Yanbo Wang, Lucy Fu
  • Patent number: 9564630
    Abstract: The present invention provides a process for producing a graphene-enhanced anode active material for use in a lithium battery. The process comprises (a) providing a continuous film of a graphene material into a deposition zone; (b) introducing vapor or atoms of a precursor anode active material into the deposition zone, allowing the vapor or atoms to deposit onto a surface of the graphene material film to form a sheet of an anode active material-coated graphene material; and (c) mechanically breaking this sheet into multiple pieces of anode active material-coated graphene; wherein the graphene material is in an amount of from 0.1% to 99.5% by weight and the anode active material is in an amount of at least 0.5% by weight, all based on the total weight of the graphene material and the anode active material combined.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: February 7, 2017
    Assignee: Nantek Instuments, Inc.
    Inventors: Yanbo Wang, Bor Z Jang, Hui He, Aruna Zhamu
  • Patent number: 9455469
    Abstract: A magnesium-ion cell comprising (a) a cathode comprising a carbon or graphitic material as a cathode active material having a surface area to capture and store magnesium thereon, wherein the cathode forms a meso-porous structure having a pore size from 2 nm to 50 nm and a specific surface area greater than 50 m2/g; (b) an anode comprising an anode current collector alone or a combination of an anode current collector and an anode active material; (c) a porous separator disposed between the anode and the cathode; (d) electrolyte in ionic contact with the anode and the cathode; and (e) a magnesium ion source disposed in the anode to obtain an open circuit voltage (OCV) from 0.5 volts to 3.5 volts when the cell is made.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: September 27, 2016
    Assignee: Nanotek Instruments, Inc.
    Inventors: Yanbo Wang, Aruna Zhamu, Bor Z. Jang
  • Patent number: 9437370
    Abstract: A lithium-ion cell comprising: (A) a cathode comprising graphene as the cathode active material having a surface area to capture and store lithium thereon and wherein said graphene cathode is meso-porous having a specific surface area greater than 100 m2/g; (B) an anode comprising an anode active material for inserting and extracting lithium, wherein the anode active material is mixed with a conductive additive and/or a resin binder to form a porous electrode structure, or coated onto a current collector in a coating or thin film form; (C) a porous separator disposed between the anode and the cathode; (D) a lithium-containing electrolyte in physical contact with the two electrodes; and (E) a lithium source disposed in at least one of the two electrodes when the cell is made. This new Li-ion cell exhibits an unprecedentedly high energy density.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: September 6, 2016
    Assignee: Nanotek Instruments, Inc.
    Inventors: Guorong Chen, Aruna Zhamu, Xiging Wang, Bor Z. Jang, Yanbo Wang, Qing Fang
  • Patent number: 9385539
    Abstract: This invention provides a portable computing device powered by a surface-mediated cell (SMC)-based power source, the portable device comprising a computing hardware sub-system and a rechargeable power source electrically connected to the hardware and providing power thereto, wherein the power source contains at least a surface-mediated cell. The portable computing device is selected from a laptop computer, a tablet, an electronic book (e-book), a smart phone, a mobile phone, a digital camera, a hand-held calculator or computer, or a personal digital assistant.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: July 5, 2016
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Guorong Chen, Xiqing Wang, Bor Z. Jang, Yanbo Wang, Qing Fang
  • Patent number: 9385397
    Abstract: The present invention provides a battery or supercapacitor current collector which is prelithiated. The prelithiated current collector comprises: (a) an electrically conductive substrate having two opposed primary surfaces, and (b) a mixture layer of carbon (and/or other stabilizing element, such as B, Al, Ga, In, C, Si, Ge, Sn, Pb, As, Sb, Bi, Te, or a combination thereof) and lithium or lithium alloy coated on at least one of the primary surfaces, wherein lithium element is present in an amount of 1% to 99% by weight of the mixture layer. This current collector serves as an effective and safe lithium source for a wide variety of electrochemical energy storage cells, including the rechargeable lithium cell (e.g. lithium-metal, lithium-ion, lithium-sulfur, lithium-air, lithium-graphene, lithium-carbon, and lithium-carbon nanotube cell) and the lithium ion based supercapacitor cell (e.g, symmetric ultracapacitor, asymmetric ultracapacitor, hybrid supercapacitor-battery, or lithium-ion capacitor).
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: July 5, 2016
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Yanbo Wang, Bor Z. Jang
  • Patent number: 9368831
    Abstract: A rechargeable lithium cell comprising a cathode having a cathode active material, an anode having an anode active material, a porous separator electronically separating the anode and the cathode, a non-flammable quasi-solid electrolyte in contact with the cathode and the anode, wherein the electrolyte contains a lithium salt dissolved in a first organic liquid solvent with a concentration sufficiently high so that the electrolyte exhibits a vapor pressure less than 0.01 kPa when measured at 20° C., a flash point at least 20 degrees Celsius higher than the flash point of the first organic liquid solvent alone, a flash point higher than 150° C., or no flash point. This battery cell is non-flammable and safe, has a long cycle life, high capacity, and high energy density.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 14, 2016
    Assignee: Nanotek Instruments, Inc.
    Inventors: Hui He, Bor Z Jang, Yanbo Wang, Aruna Zhamu
  • Patent number: 9349542
    Abstract: An energy storage stack of at least two surface-mediated cells (SMCs) internally connected in parallel or in series. The stack includes: (A) At least two SMC cells, each consisting of (i) a cathode comprising a porous cathode current collector and a cathode active material; (ii) a porous anode current collector; and (iii) a porous separator disposed between the cathode and the anode; (B) A lithium-containing electrolyte in physical contact with all the electrodes, wherein the cathode active material has a specific surface area no less than 100 m2/g in direct physical contact with the electrolyte to receive lithium ions therefrom or to provide lithium ions thereto; and (C) A lithium source. This new-generation energy storage device exhibits the highest power densities of all energy storage devices, much higher than those of all the lithium ion batteries, lithium ion capacitors, and supercapacitors.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 24, 2016
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, GuoRong Chen, Xiqing Wang, Bor Z. Jang, Yanbo Wang
  • Publication number: 20160059444
    Abstract: A one-step (direct graphitization) process for producing a graphitic film, comprising directly feeding a precursor polymer film, without going through a carbonization step, to a graphitization zone preset at a graphitization temperature no less than 2,200° C. for a period of residence time sufficient for converting the precursor polymer film to a porous graphitic film having a density from 0.1 g/cm3 to 1.5 g/cm3 and retreating the porous graphitic film from the graphitization zone. Preferably, the precursor polymer film is selected from the group consisting of polyimide, polyamide, phenolic resin, polyoxadiazole, polybenzoxazole, polybenzobisoxazole, polythiazole, polybenzothiazole, polybenzobisthiazole, poly(p-phenylene vinylene), polybenzimidazole, polybenzobisimidazole, polyacrylonitrile, and combinations thereof.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 3, 2016
    Inventors: Yanbo Wang, Bor Z. Jang, David Burton, Lucy Fu, Aruna Zhamu
  • Patent number: 9203084
    Abstract: Provided is a cathode (positive electrode) of a lithium battery and a process for producing this cathode. The electrode comprises a cathode active material-coated graphene sheet and the graphene sheet has two opposed parallel surfaces, wherein at least 50% area (preferably greater than 80%) of one of the two surfaces is coated with a cathode active material coating. The graphene material is in an amount of from 0.1% to 99.5% by weight and the cathode active material is in an amount of at least 0.5% by weight (preferably greater than 80% and more preferably greater than 90%), all based on the total weight of the graphene material and the cathode active material combined. The cathode active material is preferably an inorganic material, an organic or polymeric material, a metal oxide/phosphate/sulfide, or a combination thereof. Also provided is a lithium battery, including a lithium-ion, lithium-metal, or lithium-sulfur battery.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: December 1, 2015
    Assignee: Nanotek Instrurments, Inc.
    Inventors: Yanbo Wang, Bor Z Jang, Hui He, Aruna Zhamu
  • Patent number: 9193132
    Abstract: A process for producing a bulk highly oriented graphene structure, comprising: (a) preparing a graphene oxide dispersion having graphene oxide (GO) sheets dispersed in a fluid medium; (b) dispensing and depositing the dispersion onto a surface of a supporting substrate to form a layer of GO, wherein the dispensing and depositing procedure includes subjecting the dispersion to an orientation-inducing stress; (c) removing the fluid medium to form a dried layer of GO having an inter-plane spacing d002 of 0.4 nm to 1.2 nm; (d) slicing the dried layer of GO into multiple pieces of dried GO and stacking at least two pieces of dried GO to form a mass of multiple pieces of GO; and (f) heat treating the mass under an optional first compressive stress to produce the highly oriented graphene structure at a first heat treatment temperature higher than 100° C. to an extent that an inter-plane spacing d002 is decreased to a value less than 0.4 nm.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: November 24, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z Jang, Yanbo Wang, Lucy Fu
  • Patent number: 9190696
    Abstract: A rechargeable lithium metal or lithium-ion cell comprising a cathode having a cathode active material and/or a conductive supporting structure, an anode having an anode active material and/or a conductive supporting nano-structure, a porous separator electronically separating the anode and the cathode, a highly concentrated electrolyte in contact with the cathode active material and the anode active material, wherein the electrolyte contains a lithium salt dissolved in an ionic liquid solvent with a concentration greater than 3 M. The cell exhibits an exceptionally high specific energy, a relatively high power density, a long cycle life, and high safety with no flammability.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: November 17, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Hui He, Bor Z Jang, Yanbo Wang, Aruna Zhamu
  • Patent number: 9166835
    Abstract: Methods and systems for peak detection as part of automatic gain control in high-speed communications are provided. A peak detection system uses a portion of an input signal to generate a reference signal for comparison with the input signal. The comparison produces a differential error signal that is in turn used to produce one or more full swing pulses based on the comparison. A pulse counter counts the pulses, and if the count in a single clock cycle is above a determined threshold, a binary error signal is set to indicate a need for correction.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 20, 2015
    Assignee: INTEGRATED DEVICE TECHNOLOGY, INC
    Inventors: ChangXi Xu, XinQing Chen, YanBo Wang
  • Patent number: 9147874
    Abstract: A rechargeable lithium cell comprising: (a) an anode comprising a prelithiated lithium storage material or a combination of a lithium storage material and a lithium ion source; (b) a hybrid cathode active material composed of a meso-porous structure of a carbon, graphite, metal, or conductive polymer and a phthalocyanine compound, wherein the meso-porous structure is in an amount of from 1% to 99% by weight based on the total weight of the meso-porous structure and the phthalocyanine combined, and wherein the meso-porous structure has a pore with a size from 2 nm to 50 nm to accommodate phthalocyanine compound therein; and (c) an electrolyte or electrolyte/separator assembly. This secondary cell exhibits a long cycle life and the best cathode specific capacity and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: September 29, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Guorong Chen, Yanbo Wang, Aruna Zhamu, Bor Z. Jang
  • Patent number: 9112210
    Abstract: A rechargeable lithium cell comprising: (a) an anode; (b) a cathode comprising a hybrid cathode active material composed of a graphene material and a phthalocyanine compound, wherein the graphene material is in an amount of from 0.1% to 99% by weight based on the total weight of the graphene material and the phthalocyanine compound combined; and (c) a porous separator disposed between the anode and the cathode and electrolyte in ionic contact with the anode and the cathode. This secondary cell exhibits a long cycle life and the best cathode specific capacity and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: August 18, 2015
    Inventors: Guorong Chen, Yanbo Wang, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20150218003
    Abstract: A process for producing a highly oriented graphene film (HOGF), comprising: (a) preparing a graphene oxide (GO) dispersion having GO sheets dispersed in a fluid medium; (b) dispensing and depositing the dispersion onto a surface of a supporting substrate to form a layer of GO, wherein the dispensing and depositing procedure includes subjecting the dispersion to an orientation-inducing stress; (c) removing the fluid medium to form a dried layer of GO having an inter-plane spacing d002 of 0.4 nm to 1.2 nm; (d) slicing the dried layer of GO into multiple pieces of dried GO and stacking at least two pieces of dried GO to form a mass of multiple pieces of GO; and (f) heat treating the mass under an optional first compressive stress to produce the HOGF at a first heat treatment temperature higher than 100° C. to an extent that an inter-plane spacing d002 is decreased to a value less than 0.4 nm.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 6, 2015
    Inventors: Aruna Zhamu, Bor Z. Jang, Yanbo Wang, Lucy Fu
  • Publication number: 20150217538
    Abstract: A process for producing a bulk highly oriented graphene structure, comprising: (a) preparing a graphene oxide dispersion having graphene oxide (GO) sheets dispersed in a fluid medium; (b) dispensing and depositing the dispersion onto a surface of a supporting substrate to form a layer of GO, wherein the dispensing and depositing procedure includes subjecting the dispersion to an orientation-inducing stress; (c) removing the fluid medium to form a dried layer of GO having an inter-plane spacing d002 of 0.4 nm to 1.2 nm; (d) slicing the dried layer of GO into multiple pieces of dried GO and stacking at least two pieces of dried GO to form a mass of multiple pieces of GO; and (f) heat treating the mass under an optional first compressive stress to produce the highly oriented graphene structure at a first heat treatment temperature higher than 100° C. to an extent that an inter-plane spacing d002 is decreased to a value less than 0.4 nm.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 6, 2015
    Inventors: Aruna Zhamu, Bor Z. Jang, Yanbo Wang, Lucy Fu
  • Patent number: 9085076
    Abstract: A portable power tool comprises an electric motor, actuator, or light-emitting hardware and a rechargeable power source connected to the electric motor, actuator, or light-emitting hardware, wherein the power source contains at least a surface-mediated cell (SMC). The power tools include, but are not limited to, impact driver, air compressor, alligator shear, angle grinder, band saw, belt sander, biscuit joiner, ceramic tile cutter tile saw, chainsaw, circular saw, concrete saw, cold saw, crusher, diamond blade, diamond tools, disc sander, drill, floor sander, grinding machine, heat gun, impact wrench, jackhammer, jointer, jigsaw, lathe, miter saw, nail gun, needle scaler, torque wrench, powder-actuated tools, power wrench, radial arm saw, random orbital sander, reciprocating saw, rotary reciprocating saw, rotary tool, sabre saw, sander, scroll saw, steel cut off saw, table saw, thickness planer, trimmer, wall chaser, wood router, or flashlight.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: July 21, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Guorong Chen, Wei Xiong, Bor Z. Jang, Yanbo Wang, Qing Fang
  • Patent number: 9059481
    Abstract: A non-flammable quasi-solid electrolyte and a rechargeable non-lithium alkali metal cell containing this electrolyte. The electrolyte comprises an alkali metal salt dissolved in an organic liquid solvent with a concentration higher than 2.5 M (preferably >3.5 M) or a molecular ratio greater than 0.2 (preferably >0.3), wherein the alkali metal is selected from Na, K, a combination of Na and K, or a combination of Na and/or K with Li. The alkali metal salt concentration is sufficiently high so that the electrolyte exhibits a vapor pressure <0.01 kPa when measured at 20° C., a vapor pressure <60% of the vapor pressure of thet organic solvent when measured alone, a flash point at least 20 degrees Celsius higher than a flash point of the organic liquid solvent when measured alone, a flash point higher than 150° C., or no detectable flash point.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: June 16, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Hui He, Bor Z Jang, Yanbo Wang, Aruna Zhamu