Patents by Inventor Yanting Dong

Yanting Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10898142
    Abstract: Methods and devices for classifying a cardiac response to pacing involve establishing a retriggerable cardiac response classification window. A first cardiac response classification window is established subsequent to delivery of a pacing pulse. A cardiac signal following the pacing stimulation is sensed in the first classification window. A second cardiac response classification may be triggered if a trigger characteristic is detected in the first classification window. The cardiac signal is sensed in the second classification window if the second classification window is established. The cardiac response to the pacing stimulation is determined based on characteristics of the cardiac signal. The cardiac response may be determined to be one of a captured response, a non-captured response, a non-captured response added to an intrinsic beat, and a fusion/pseudofusion beat, for example.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: January 26, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott A. Meyer, Yanting Dong, Jeremy J. Maniak, Doug Birholz, John M. Voegele
  • Publication number: 20190365261
    Abstract: Some method examples may include pacing a heart with cardiac paces, sensing a physiological signal for use in detecting pace-induced phrenic nerve stimulation, performing a baseline level determination process to identify a baseline level for the sensed physiological signal, and detecting pace-induced phrenic nerve stimulation using the sensed physiological signal and the calculated baseline level. Detecting pace-induced phrenic nerve stimulation may include sampling the sensed physiological signal during each of a plurality of cardiac cycles to provide sampled signals and calculating the baseline level for the physiological signal using the sampled signals. Sampling the sensed physiological signal may include sampling the signal during a time window defined using a pace time with each of the cardiac cycles to avoid cardiac components and phrenic nerve stimulation components in the sampled signal.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventors: Sunipa Saha, Yanting Dong, Holly E. Rockweiler
  • Patent number: 10448853
    Abstract: An arrhythmia classification system receives cardiac data from an implantable medical device, performs automatic adjudication of each cardiac arrhythmia episode indicated by the cardiac data, and generates episode data representative of information associated with the episode. The episode data include at least an episode classification resulting from the automatic adjudication of the episode and a confidence level in the episode classification. In one embodiment, the episode data further include key features rationalizing the automatic adjudication of the episode.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: October 22, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Christopher Pulliam, Yanting Dong, David L. Perschbacher
  • Patent number: 10413203
    Abstract: Some method examples may include pacing a heart with cardiac paces, sensing a physiological signal for use in detecting pace-induced phrenic nerve stimulation, performing a baseline level determination process to identify a baseline level for the sensed physiological signal, and detecting pace-induced phrenic nerve stimulation using the sensed physiological signal and the calculated baseline level. Detecting pace-induced phrenic nerve stimulation may include sampling the sensed physiological signal during each of a plurality of cardiac cycles to provide sampled signals and calculating the baseline level for the physiological signal using the sampled signals. Sampling the sensed physiological signal may include sampling the signal during a time window defined using a pace time with each of the cardiac cycles to avoid cardiac components and phrenic nerve stimulation components in the sampled signal.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 17, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Yanting Dong, Holly Rockweiler
  • Publication number: 20180249963
    Abstract: Methods and devices for classifying a cardiac response to pacing involve establishing a retriggerable cardiac response classification window. A first cardiac response classification window is established subsequent to delivery of a pacing pulse. A cardiac signal following the pacing stimulation is sensed in the first classification window. A second cardiac response classification may be triggered if a trigger characteristic is detected in the first classification window. The cardiac signal is sensed in the second classification window if the second classification window is established. The cardiac response to the pacing stimulation is determined based on characteristics of the cardiac signal. The cardiac response may be determined to be one of a captured response, a non-captured response, a non-captured response added to an intrinsic beat, and a fusion/pseudofusion beat, for example.
    Type: Application
    Filed: May 3, 2018
    Publication date: September 6, 2018
    Inventors: Scott A. Meyer, Yanting Dong, Jeremy J. Maniak, Doug Birholz, John M. Voegele
  • Patent number: 9993205
    Abstract: Methods and devices for classifying a cardiac response to pacing involve establishing a retriggerable cardiac response classification window. A first cardiac response classification window is established subsequent to delivery of a pacing pulse. A cardiac signal following the pacing stimulation is sensed in the first classification window. A second cardiac response classification may be triggered if a trigger characteristic is detected in the first classification window. The cardiac signal is sensed in the second classification window if the second classification window is established. The cardiac response to the pacing stimulation is determined based on characteristics of the cardiac signal. The cardiac response may be determined to be one of a captured response, a non-captured response, a non-captured response added to an intrinsic beat, and a fusion/pseudofusion beat, for example.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: June 12, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott A. Meyer, Yanting Dong, Jeremy Maniak, Doug Birholz, John Voegele
  • Patent number: 9730604
    Abstract: An apparatus comprises an implantable cardiac signal sensing circuit configured to provide a sensed depolarization signal from a ventricle and a processor. The processor includes a signal analyzer module and a tachyarrhythmia discrimination module. The signal analyzer module is configured to determine a measure of stability of ventricular (V-V) depolarization intervals using the depolarization signal, and determine a rate of change of the measure of stability. The tachyarrhythmia discrimination module is configured to detect an episode of tachyarrhythmia using the depolarization signal, determine whether the detected tachyarrhythmia is indicative of atrial tachyarrhythmia using the determined rate of change, and provide the determination to a user or process.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: August 15, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Dan Li, David L. Perschbacher, Yanting Dong, Julie Stephenson
  • Patent number: 9662504
    Abstract: Monitoring physiological parameter using an implantable physiological monitor in order to detect a condition predictive of a possible future pathological episode and collecting additional physiological data associated with the condition predictive of a possible future pathological episode. Monitoring another physiological parameter in order to detect a condition indicative of the beginning of a present pathological episode and collecting additional pathological data in response to the condition. Determining that the condition predictive of a future episode and the condition indicative of a present episode are associated and, in response thereto, storing all the collected physiological data.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: May 30, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, David L. Perschbacher, Jeffrey E. Stahmann, Dan Li, Deepa Mahajan
  • Patent number: 9649498
    Abstract: Various techniques are disclosed for quickly and efficiently determining cardiac pacing vectors that minimize phrenic nerve stimulation.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 16, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Yanting Dong, Sunipa Saha, Holly Rockweiler, Kenneth N. Hayes, Krzysztof Z. Siejko, Clayton S. Foster
  • Publication number: 20160357934
    Abstract: The disclosed computerized system and method facilitates predicting the onset of diabetes or symptom progression in those patients already suffering from the disease. The computerized system and method applies steps to segment the population by predefined member characteristics. Once segmented, the computerized system and method applies a plurality of prediction models to the segmented population data to provide a ranking of members of the population that indicates the likelihood of onset or progression of diabetes for each member.
    Type: Application
    Filed: November 16, 2015
    Publication date: December 8, 2016
    Inventors: Yanting Dong, Jing Fan, Vinay Chiguluri, Vipin Gopal
  • Publication number: 20160357923
    Abstract: The present invention is a method of predicting the likelihood that chronic kidney disease will result in end stage renal disease requiring dialysis. The method uses various indicators comprising information specific to an individual as well as information representing characteristics of a population including demographic information, health care and prescription insurance claims, and involvement in various programs designed to improve the health of a user. The method applies a predictive algorithm to these indicators in order to derive a risk score indicating an individual's risk of dialysis.
    Type: Application
    Filed: February 29, 2016
    Publication date: December 8, 2016
    Inventors: Yanting Dong, Vipin Gopal
  • Patent number: 9510764
    Abstract: An apparatus comprises an implantable cardiac signal sensing circuit configured to provide a sensed depolarization signal from a ventricle and a processor. The processor includes a signal analyzer module and a tachyarrhythmia discrimination module. The signal analyzer module is configured to determine a measure of stability of ventricular (V-V) depolarization intervals using the depolarization signal, and determine a rate of change of the measure of stability. The tachyarrhythmia discrimination module is configured to detect an episode of tachyarrhythmia using the depolarization signal, determine whether the detected tachyarrhythmia is indicative of atrial tachyarrhythmia using the determined rate of change, and provide the determination to a user or process.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 6, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Dan Li, David L. Perschbacher, Yanting Dong, Julie Stephenson
  • Publication number: 20160243370
    Abstract: Monitoring physiological parameter using an implantable physiological monitor in order to detect a condition predictive of a possible future pathological episode and collecting additional physiological data associated with the condition predictive of a possible future pathological episode. Monitoring another physiological parameter in order to detect a condition indicative of the beginning of a present pathological episode and collecting additional pathological data in response to the condition. Determining that the condition predictive of a future episode and the condition indicative of a present episode are associated and, in response thereto, storing all the collected physiological data.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Yanting Dong, David L. Perschbacher, Jeffrey E. Stahmann, Dan Li, Deepa Mahajan
  • Publication number: 20160220137
    Abstract: An arrhythmia classification system receives cardiac data from an implantable medical device, performs automatic adjudication of each cardiac arrhythmia episode indicated by the cardiac data, and generates episode data representative of information associated with the episode. The episode data include at least an episode classification resulting from the automatic adjudication of the episode and a confidence level in the episode classification. In one embodiment, the episode data further include key features rationalizing the automatic adjudication of the episode.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Deepa Mahajan, Christopher Pulliam, Yanting Dong, David L. Perschbacher
  • Publication number: 20160135707
    Abstract: An apparatus comprises an implantable cardiac signal sensing circuit configured to provide a sensed depolarization signal from a ventricle and a processor. The processor includes a signal analyzer module and a tachyarrhythmia discrimination module. The signal analyzer module is configured to determine a measure of stability of ventricular (V?V) depolarization intervals using the depolarization signal, and determine a rate of change of the measure of stability. The tachyarrhythmia discrimination module is configured to detect an episode of tachyarrhythmia using the depolarization signal, determine whether the detected tachyarrhythmia is indicative of atrial tachyarrhythmia using the determined rate of change, and provide the determination to a user or process.
    Type: Application
    Filed: January 27, 2016
    Publication date: May 19, 2016
    Inventors: Dan Li, David L. Perschbacher, Yanting Dong, Julie Stephenson
  • Patent number: 9339658
    Abstract: Monitoring physiological parameter using an implantable physiological monitor in order to detect a condition predictive of a possible future pathological episode and collecting additional physiological data associated with the condition predictive of a possible future pathological episode. Monitoring another physiological parameter in order to detect a condition indicative of the beginning of a present pathological episode and collecting additional pathological data in response to the condition. Determining that the condition predictive of a future episode and the condition indicative of a present episode are associated and, in response thereto, storing all the collected physiological data.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: May 17, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, David L. Perschbacher, Jeffrey E. Stahmann, Dan Li, Deepa Mahajan
  • Patent number: 9307920
    Abstract: An arrhythmia classification system receives cardiac data from an implantable medical device, performs automatic adjudication of each cardiac arrhythmia episode indicated by the cardiac data, and generates episode data representative of information associated with the episode. The episode data include at least an episode classification resulting from the automatic adjudication of the episode and a confidence level in the episode classification. In one embodiment, the episode data further include key features rationalizing the automatic adjudication of the episode.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: April 12, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Christopher Pulliam, Yanting Dong, David L. Perschbacher
  • Patent number: 9126052
    Abstract: Approaches for rate initialization and overdrive pacing used during capture threshold testing are described. Cardiac cycles are detected and the cardiac events of a cardiac chamber that occur during the cardiac cycles are monitored. The number of intrinsic beats in the cardiac events is counted. Initialization for a capture threshold test involves maintaining a pre-test pacing rate for the capture threshold test if the number of intrinsic beats in the cardiac events is less than a threshold. The pacing rate is increased for the capture threshold test if the number of intrinsic beats in the cardiac events is greater than the threshold.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: September 8, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric K. Enrooth, Sunipa Saha, Clayton S. Foster, Yanting Dong
  • Publication number: 20150134025
    Abstract: Various techniques are disclosed for quickly and efficiently determining cardiac pacing vectors that minimize phrenic nerve stimulation.
    Type: Application
    Filed: January 21, 2015
    Publication date: May 14, 2015
    Inventors: Deepa Mahajan, Yanting Dong, Sunipa Saha, Holly Rockweiler, Kenneth N. Hayes, Krzysztof Z. Siejko, Clayton S. Foster
  • Patent number: 9031651
    Abstract: In an example, a system includes a cardiac pulse generator configured to generate cardiac paces to pace the heart, a sensor configured to sense a physiological signal for use in detecting pace-induced phrenic nerve stimulation where the pace-induced phrenic nerve stimulation is phrenic nerve stimulation induced by electrical cardiac pace signals, and a phrenic nerve stimulation detector configured to analyze the sensed physiological signal to detect PS beats where the PS beats are cardiac paces that induce phrenic nerve stimulation. The detector may be configured to correlate signal data for sensed beat signals to a PS template to detect PS beats, or may be configured to analyze morphological features of sensed beat signals to detect PS beats, or may be configured to detect PS beats using a combination that both correlates signal data for sensed beat signals to a PS template and analyzes morphological features of sensed beat signals.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: May 12, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Holly Rockweiler, Sunipa Saha, Yanting Dong