Patents by Inventor Yanting Dong

Yanting Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8725255
    Abstract: Systems and methods provide for pacing a heart to improve pumping efficiency of the heart, such as by producing a cardiac fusion response for patient's subject to cardiac resynchronization therapy. A pacing parameter, such as an A-V delay, V-V delay, lead/electrode configuration or vector, is adjusted and a cardiac signal vector representative of all or a portion of one or more cardiac activation sequences is monitored during pacing parameter adjustment. A change in a characteristic of the cardiac signal vector is detected in response to an adjusted pacing parameter, the change indicative of a cardiac fusion response. A pacing therapy may be delivered to produce the cardiac fusion response using the adjusted pacing parameter.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: May 13, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Yi Zhang, Jiang Ding, Yinghong Yu, Yanting Dong
  • Patent number: 8649860
    Abstract: Monitoring physiological parameter using an implantable physiological monitor in order to detect a condition predictive of a possible future pathological episode and collecting additional physiological data associated with the condition predictive of a possible future pathological episode. Monitoring another physiological parameter in order to detect a condition indicative of the beginning of a present pathological episode and collecting additional pathological data in response to the condition. Determining that the condition predictive of a future episode and the condition indicative of a present episode are associated and, in response thereto, storing all the collected physiological data.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: February 11, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, David L. Perschbacher, Jeffrey E. Stahmann, Dan Li, Deepa Mahajan
  • Publication number: 20140018875
    Abstract: An apparatus comprises a cardiac signal sensing circuit, a pacing therapy circuit, and a controller circuit. The controller circuit includes a safety margin calculation circuit. The controller circuit initiates delivery of pacing stimulation energy to the heart using a first energy level, changes the energy level by at least one of: a) increasing the energy from the first energy level until detecting that the pacing stimulation energy induces stable capture, or b) reducing the energy from the first energy level until detecting that the stimulation energy fails to induce capture, and continues changing the stimulation energy level until confirming stable capture or the failure of capture. The safety margin calculation circuit calculates a safety margin of pacing stimulation energy using at least one of a determined stability of a parameter associated with evoked response and a determined range of energy levels corresponding to stable capture or intermittent failure of capture.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 16, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Shibaji Shome, Kenneth N. Hayes, Yanting Dong, Aaron R. McCabe, Scott A. Meyer, Kevin John Stalsberg
  • Publication number: 20140005742
    Abstract: Various techniques are disclosed for quickly and efficiently determining cardiac pacing vectors that minimize phrenic nerve stimulation.
    Type: Application
    Filed: June 24, 2013
    Publication date: January 2, 2014
    Inventors: Deepa Mahajan, Yanting Dong, Sunipa Saha, Holly Rockweiler, Kenneth N. Hayes, Krzysztof Z. Siejko, Clayton S. Foster
  • Patent number: 8600506
    Abstract: A method of and system for collecting patient event information is described, where the system includes an implantable medical device (IMD) and an external interface device. The external interface device is remote from the IMD and includes a communication module, a display device adapted to prompt a user of the system to select a reason for a particular transmission session and a user input device adapted to accept input indicating a selected reason.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: December 3, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Stephen J. Hahn, Yanting Dong, Haresh G. Sachanandani, Kenneth P. Hoyme, James O. Gilkerson
  • Patent number: 8565879
    Abstract: An apparatus comprises a cardiac signal sensing circuit, a pacing therapy circuit, and a controller circuit. The controller circuit includes a safety margin calculation circuit. The controller circuit initiates delivery of pacing stimulation energy to the heart using a first energy level, changes the energy level by at least one of: a) increasing the energy from the first energy level until detecting that the pacing stimulation energy induces stable capture, or b) reducing the energy from the first energy level until detecting that the stimulation energy fails to induce capture, and continues changing the stimulation energy level until confirming stable capture or the failure of capture. The safety margin calculation circuit calculates a safety margin of pacing stimulation energy using at least one of a determined stability of a parameter associated with evoked response and a determined range of energy levels corresponding to stable capture or intermittent failure of capture.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: October 22, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Shibaji Shome, Kenneth N. Hayes, Yanting Dong, Aaron R. McCabe, Scott A. Meyer, Kevin John Stalsberg
  • Patent number: 8565880
    Abstract: This document discusses, among other things, a system and method for generating a stimulation energy to provide His-bundle stimulation for a cardiac cycle, receiving electrical information from the heart over at least a portion of the cardiac cycle, determining a characteristic of at least a portion of the received electrical information for the cardiac cycle, and classifying the cardiac cycle using the determined characteristic.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 22, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, Allan C. Shuros, Jiang Ding, Scott A. Meyer, Shibaji Shome
  • Publication number: 20130274624
    Abstract: An arrhythmia classification system receives cardiac data from an implantable medical device, performs automatic adjudication of each cardiac arrhythmia episode indicated by the cardiac data, and generates episode data representative of information associated with the episode. The episode data include at least an episode classification resulting from the automatic adjudication of the episode and a confidence level in the episode classification. In one embodiment, the episode data further include key features rationalizing the automatic adjudication of the episode.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 17, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Christopher Pulliam, Yanting Dong, David L. Perschbacher
  • Publication number: 20130261471
    Abstract: Some method examples may include pacing a heart with cardiac paces, sensing a physiological signal for use in detecting pace-induced phrenic nerve stimulation, performing a baseline level determination process to identify a baseline level for the sensed physiological signal, and detecting pace-induced phrenic nerve stimulation using the sensed physiological signal and the calculated baseline level. Detecting pace-induced phrenic nerve stimulation may include sampling the sensed physiological signal during each of a plurality of cardiac cycles to provide sampled signals and calculating the baseline level for the physiological signal using the sampled signals. Sampling the sensed physiological signal may include sampling the signal during a time window defined using a pace time with each of the cardiac cycles to avoid cardiac components and phrenic nerve stimulation components in the sampled signal.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Yanting Dong, Holly Rockweiler
  • Publication number: 20130261688
    Abstract: In an example of a method, the method includes testing for phrenic nerve stimulation (PS) threshold. If PS beats are detected at the pacing output level, analyzing the detected PS beats using criteria to determine if the pacing output level can be declared to be the PS threshold. If the pacing output level cannot be declared to be the PS threshold based on the analysis of the PS beat at the pacing output level, performing a PS beat confirmation procedure. The PS beat confirmation procedure may include delivering additional cardiac paces at the pacing output level to generate additional PS beats, and analyzing the detected PS beats using other criteria to determine if the pacing output level can be confirmed as the PS threshold.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, Sunipa Saha, Holly Rockweiler
  • Publication number: 20130261476
    Abstract: In an example, a system includes a cardiac pulse generator configured to generate cardiac paces to pace the heart, a sensor configured to sense a physiological signal for use in detecting pace-induced phrenic nerve stimulation where the pace-induced phrenic nerve stimulation is phrenic nerve stimulation induced by electrical cardiac pace signals, and a phrenic nerve stimulation detector configured to analyze the sensed physiological signal to detect PS beats where the PS beats are cardiac paces that induce phrenic nerve stimulation. The detector may be configured to correlate signal data for sensed beat signals to a PS template to detect PS beats, or may be configured to analyze morphological features of sensed beat signals to detect PS beats, or may be configured to detect PS beats using a combination that both correlates signal data for sensed beat signals to a PS template and analyzes morphological features of sensed beat signals.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Holly Rockweiler, Sunipa Saha, Yanting Dong
  • Patent number: 8517013
    Abstract: Systems and methods provide for coordinated cardiac pacing with delivery of cardiopulmonary resuscitation (CPR) to a patient. Managing cardiac pacing in a patient during a cardiac arrhythmia involves detecting a cardiac arrhythmia using a patient implantable medical device, prompting a cardiopulmonary resuscitation compression, and delivering, using the patient implantable medical device, a pacing pulse to a heart chamber in coordination with the compression prompt.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: August 27, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Quan Ni, Yanting Dong
  • Patent number: 8494619
    Abstract: In an example, a cardiac rhythm management system includes an implantable physiological data monitor, a processor, a memory, and a display. The implantable physiological data monitor can be configured to monitor a plurality of cardiac responses. The processor can be configured to classify the cardiac response into one of at least three classes including pace-dominant, fusion, and pseudo-fusion. The processor can also be configured to calculate statistical information regarding the classified cardiac responses. In this example, the pace-dominant, fusion, and pseudo-fusion classes correspond to a cardiac response resulting from a corresponding electrostimulation. The memory is configured to store the classified cardiac responses and calculated statistical information for future use by the processor or for display. The display is configured to display the statistical information stored in the memory for diagnostic and device programming purposes.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: July 23, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Theodore J. Schulte, Yanting Dong, Shibaji Shome, Abhilash Patangay
  • Patent number: 8483808
    Abstract: A system and method for automatically analyzing a cardiac signal, including the step of providing an episode database on a computer storage medium including a plurality of episode data records of one or more patients. Each episode data record includes a cardiac signal from at least one data-generating device. The method also includes the step of selecting one or more of the N beats to be one or more beat templates, for at least a first cardiac signal having N beats. Another step is determining a value K for the cardiac signal using a computer system where K beat templates can represent all the N beats in the cardiac signal.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: July 9, 2013
    Inventors: Yanting Dong, Shijie Zhang, Dan Li, Yayun Lin
  • Publication number: 20130158615
    Abstract: An apparatus comprises an implantable cardiac signal sensing circuit and a controller circuit. The implantable cardiac signal sensing circuit provides a sensed depolarization signal from a ventricle and a sensed depolarization signal from an atrium. The controller circuit includes a one-to-one detector circuit and a tachyarrhythmia discrimination circuit. The one-to-one detector circuit measures cardiac depolarization intervals of the atrium and the ventricle and determines whether a relationship of atrial depolarizations to ventricular depolarizations is substantially one-to-one. The tachyarrhythmia discrimination circuit classifies the episode as VT when detecting a shortening or prolonging of a V-V interval that immediately precedes the same shortening or prolonging of an A-A interval.
    Type: Application
    Filed: February 12, 2013
    Publication date: June 20, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Yanting Dong, David L. Perschbacher
  • Publication number: 20130138005
    Abstract: A system and method for performing off-line analysis of cardiac electrogram data, comprising: retrieving an electrogram from a memory location; identifying a first-channel group of candidate beats from at least a first channel of the electrogram; and identifying a second-channel group of candidate beats from at least a second channel of an electrogram. For each first-channel beat candidate near a second-channel beat candidate, the amplitude of the first-channel beat candidate is compared with the amplitude of a previous beat and the amplitude of a next beat on the first electrogram channel, and first-channel beat candidates that are outside of a first pre-determined range from either the previous or next beat are removed. Then first-channel beat candidates that are outside of a second pre-determined range from either the previous or next beat candidate are removed.
    Type: Application
    Filed: May 30, 2012
    Publication date: May 30, 2013
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Yanting Dong, Shijie Zhang, Deepa Mahajan, Chenguang Liu, Dan Li, Yayun Lin, Derek D. Bohn
  • Publication number: 20130138004
    Abstract: A system and method for performing independent, off-line evaluation of event sensing for collected electrograms, comprising: sensing an electrogram using an implantable medical device (IMD); determining locations of heart beats on at least one channel of the electrogram using a multi-pass process, resulting in a group of multi-pass beat locations; storing the electrogram and device-identified beat locations in a memory location; and retrieving the electrogram and device-identified beat locations from the memory location. The multi-pass process determines locations of heart beats on at least a first channel of the electrogram. The device-identified group of beat locations are then compared to the multi-pass group of beat locations identified using the multi-pass method. Based on the comparing step, oversensing of beats, undersensing of beats, or noise from the device can be detected.
    Type: Application
    Filed: May 30, 2012
    Publication date: May 30, 2013
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Yanting Dong, Shijie Zhang, Deepa Mahajan, Chenguang Liu, Dan Li, Yayun Lin, Derek D. Bohn
  • Patent number: 8452405
    Abstract: Noncaptured atrial paces can result in long-short cardiac cycles which are proarrhythmic for ventricular tachyarrhythmia. Approaches are described which are directed to avoiding proarrhythmic long-short cycles. For cardiac cycles in which the atrial pace captures the atrium, a first post ventricular refractory period (PVARP) and a first A-A interval are used. For cardiac cycles in which the atrial pace does not capture the atrium, both an extended PVARP and an extended A-A interval are used. The A-A interval following a noncaptured atrial pace is extended from an atrial depolarization sensed during the extended PVARP.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: May 28, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric Enrooth, Yanting Dong, Kenneth N. Hayes, Gary T. Seim, Kevin John Stalsberg, Aaron McCabe
  • Patent number: 8403830
    Abstract: An apparatus comprises an implantable cardiac signal sensing circuit and a controller circuit. The implantable cardiac signal sensing circuit provides a sensed depolarization signal from a ventricle and a sensed depolarization signal from an atrium. The controller circuit includes a one-to-one detector circuit and a tachyarrhythmia discrimination circuit. The one-to-one detector circuit measures cardiac depolarization intervals of the atrium and the ventricle and determines whether a relationship of atrial depolarizations to ventricular depolarizations is substantially one-to-one. The tachyarrhythmia discrimination circuit increments a counter when detecting a shortening or prolonging of a V-V interval that immediately precedes the same shortening or prolonging of an A-A interval, classifies the episode as VT according to the counter, and provides the classification of the tachyarrhythmia episode to a user or process.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: March 26, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Yanting Dong, David L. Perschbacher
  • Patent number: 8401639
    Abstract: Cardiac resynchronization therapy is delivered to a heart using an extended bipolar electrode configuration in accordance with programmed pacing parameters including a non-zero intraventricular delay. The extended bipolar electrode configuration comprises a left ventricular electrode defining a cathode of the extended bipolar electrode configuration and a right ventricular electrode defining an anode of the extended bipolar electrode configuration. A pace pulse is delivered to the left ventricular electrode and anodal stimulation of the right ventricle is detected based on the sensed response to the pace pulse.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 19, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Shibaji Shome, Yanting Dong, Amy Jean Brisben