Patents by Inventor Yaroslav A. Urzhumov

Yaroslav A. Urzhumov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170069973
    Abstract: The present disclosure provides system and methods for optimizing the tuning of impedance elements associate with sub-wavelength antenna elements to attain target radiation and/or field patterns. Both static and variable (tunable) antenna systems may be manufactured. Static embodiments may be entirely passive in some embodiments. A scattering matrix (S-Matrix) of field amplitudes for each of a plurality of modeled lumped ports, N, may be determined that includes a plurality of lumped antenna ports, Na, with impedance values corresponding to the impedance values of associated impedance elements and at least one modeled external port, Ne, located external to the antenna system at a specified radius vector. Impedance values may be identified through an optimization process, and the impedance elements may be tuned (dynamically or statically) to attain a specific target radiation pattern.
    Type: Application
    Filed: December 31, 2015
    Publication date: March 9, 2017
    Inventors: Eric J. Black, Brian Mark Deutsch, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Publication number: 20170069966
    Abstract: The present disclosure provides system and methods for optimizing the tuning of impedance elements associate with sub-wavelength antenna elements to attain target radiation and/or field patterns. A scattering matrix (S-Matrix) of field amplitudes for each of a plurality of modeled lumped ports, N, may be determined that includes a plurality of lumped antenna ports, Na, with impedance values corresponding to the impedance values of associated impedance elements and at least one modeled external port, Ne, located external to the antenna system at a specified radius vector. Impedance values may be identified through an optimization process, and the impedance elements may be tuned (dynamically or statically) to attain a specific target radiation pattern.
    Type: Application
    Filed: October 20, 2015
    Publication date: March 9, 2017
    Inventors: Eric J. Black, Brian Mark Deutsch, Alexander Remley Katko, Melroy Machado, Jay Howard McCandless, Yaroslav A. Urzhumov
  • Publication number: 20170053190
    Abstract: Described embodiments include a system, article of manufacture, a system implemented in a machine, article of manufacture, or composition of matter, and computer-implemented method. A computer-implemented method includes electronically receiving a digital image of person observing a subject person. The method includes determining from the digital image an interest-level in the subject person by the imaged person. The method includes electronically outputting the determined interest-level. In an embodiment, the method includes storing at least one digital image of the monitored person in a non-transitory computer readable storage media.
    Type: Application
    Filed: August 20, 2015
    Publication date: February 23, 2017
    Inventors: Jesse R. Cheatham, III, Joel Cherkis, Paul H. Dietz, Tom Driscoll, William David Duncan, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Neil Jordan, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Patrick Neill, Tony S. Pan, Robert C. Petroski, David R. Smith, Elizabeth A. Sweeney, Desney S. Tan, Clarence T. Tegreene, David Lawrence Tennenhouse, Yaroslav A. Urzhumov, Gary Wachowicz, Lowell L. Wood, Victoria Y.H. Wood
  • Patent number: 9577327
    Abstract: Described embodiments include an electromagnetic beam steering apparatus. The apparatus includes a first blazed transmission diffraction grating component configured to angularly deflect an electromagnetic beam at a first blaze angle. The apparatus includes a second blazed transmission diffraction grating component configured to angularly deflect an electromagnetic beam at a second blaze angle. The apparatus includes an electromagnetic beam steering structure configured to independently rotate the first blazed transmission diffraction grating component and the second blazed transmission diffraction grating component about a coaxial axis such that an electromagnetic beam incident on the first blazed transmission diffraction grating component exits the second blazed transmission diffraction grating component as a steered electromagnetic beam.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: February 21, 2017
    Inventors: Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9570812
    Abstract: The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an input electromagnetic field pattern from a first mode to a second mode to attain a target electromagnetic field pattern (near or far) that is different from the input electromagnetic field pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used in conjunction with an electromagnetic radiation device with a known output field pattern to attain a target field pattern. A voxel-based discretization of the distribution of dielectric constants can be used to generate the mode converting structure and/or to facilitate the optimization algorithms. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: February 14, 2017
    Assignee: ELWHA LLC
    Inventors: Tom Driscoll, John Desmond Hunt, Nathan Ingle Landy, David R. Smith, Yaroslav A. Urzhumov
  • Publication number: 20170032587
    Abstract: A system and associated methods of operation for tracking vehicles, such as automobiles, aircraft, boats, unmanned aerial vehicles, and drones. The system includes a communication interface for receiving measurements and observations of a sighting location for each of one or more vehicles from a plurality of independent observers, which may include both human observers and equipment, such as cameras, phones, telescopes, and other automated tracking devices. Upon receiving the location information, a processor associates one or more measurements with a selected vehicle and computes a location of the selected vehicle based on the measurements. In some instances, the processor may also determine a flight path of the selected vehicle based on the measurements.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Yaroslav A. Urzhumov, Thomas Allan Weaver, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170032586
    Abstract: A system and associated methods of operation for tracking vehicles, such as automobiles, aircraft, boats, unmanned aerial vehicles, and drones. The system includes a communication interface for receiving measurements and observations of a sighting location for each of one or more vehicles from a plurality of independent observers, which may include both human observers and equipment, such as cameras, phones, telescopes, and other automated tracking devices. Upon receiving the location information, a processor associates one or more measurements with a selected vehicle and computes a location of the selected vehicle based on the measurements. In some instances, the processor may also determine a flight path of the selected vehicle based on the measurements.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Yaroslav A. Urzhumov, Thomas Allan Weaver, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170025756
    Abstract: Described embodiments include an electromagnetic beam steering apparatus. The apparatus includes a first planar refractive component including a first tangential refractive index gradient deflecting an electromagnetic beam at a first deflection angle. The apparatus includes a second planar refractive component including a second tangential refractive index gradient deflecting an electromagnetic beam at a second deflection angle. The apparatus includes an electromagnetic beam steering structure configured to independently rotate the first planar refractive component and the second planar refractive component about a coaxial axis such that an electromagnetic beam incident on the first planar refractive component exits the second planar refractive component as a steered electromagnetic beam.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 26, 2017
    Inventors: Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170025754
    Abstract: Described embodiments include an electromagnetic beam steering apparatus. The apparatus includes a first electromagnetic beam deflecting structure including a first artificially structured effective media having at least two first electronically-selectable tangential refractive index gradients. Each electronically-selectable tangential refractive index gradient of the at least two first electronically selectable tangential refractive index gradients deflecting an incident electromagnetic beam at a respective first deflection angle. The apparatus includes a second electromagnetic beam deflecting structure including a second artificially structured effective media having at least two second electronically-selectable tangential refractive index gradients. Each electronically-selectable tangential refractive index gradient of the at least two second electronically selectable tangential refractive index gradients deflecting an incident electromagnetic beam at a respective second deflection angle.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 26, 2017
    Inventors: Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170025753
    Abstract: Described embodiments include an electromagnetic beam steering apparatus. The apparatus includes a first blazed transmission diffraction grating component configured to angularly deflect an electromagnetic beam at a first blaze angle. The apparatus includes a second blazed transmission diffraction grating component configured to angularly deflect an electromagnetic beam at a second blaze angle. The apparatus includes an electromagnetic beam steering structure configured to independently rotate the first blazed transmission diffraction grating component and the second blazed transmission diffraction grating component about a coaxial axis such that an electromagnetic beam incident on the first blazed transmission diffraction grating component exits the second blazed transmission diffraction grating component as a steered electromagnetic beam.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 26, 2017
    Inventors: Tom Driscoll, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170021903
    Abstract: A lightweight transport vessel transports compressed natural gas underwater without needing to liquefy the gas for transport.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 26, 2017
    Applicant: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Tom Driscoll, Alexander Galt Hyde, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, David R. Smith, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20170015415
    Abstract: A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft.
    Type: Application
    Filed: July 15, 2015
    Publication date: January 19, 2017
    Inventors: ALISTAIR K. CHAN, JESSE R. CHEATHAM, III, HON WAH CHIN, WILLIAM DAVID DUNCAN, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, TONY S. PAN, ROBERT C. PETROSKI, CLARENCE T. TEGREENE, DAVID B. TUCKERMAN, YAROSLAV A. URZHUMOV, THOMAS ALLAN WEAVER, LOWELL L. WOOD, Jr., VICTORIA Y.H. WOOD
  • Publication number: 20170015414
    Abstract: A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft.
    Type: Application
    Filed: July 15, 2015
    Publication date: January 19, 2017
    Inventors: ALISTAIR K. CHAN, JESSE R. CHEATHAM, III, HON WAH CHIN, WILLIAM DAVID DUNCAN, RODERICK A. HYDE, MURIEL Y. ISHIKAWA, JORDIN T. KARE, TONY S. PAN, ROBERT C. PETROSKI, CLARENCE T. TEGREENE, DAVID B. TUCKERMAN, YAROSLAV A. URZHUMOV, THOMAS ALLAN WEAVER, LOWELL L. WOOD, JR., VICTORIA Y.H. WOOD
  • Publication number: 20170004367
    Abstract: Described embodiments include a system and method. A computer-implemented method includes receiving electronic data indicative of at least two incremental movements of a vehicle moving over a stochastic surface during a period of time proximate to an event. The electronic data is responsive to a correlation vector between a feature of the stochastic surface in a first digital image captured at a first time by a first digital imaging device carried by the vehicle and the feature of the stochastic surface in a second digital image captured at a subsequent second time by a second digital imaging device carried by the vehicle. The method includes determining in response to the received electronic data a behavior of the vehicle during the period of time proximate to the event. The method includes electronically outputting data indicative of the determined behavior of the vehicle during the period of time proximate to the event.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 5, 2017
    Inventors: Tom Driscoll, Joseph R. Guerci, Russell J. Hannigan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20160373181
    Abstract: Holographic beamforming antennas may be utilized for adaptive routing within communications networks, such as wireless backhaul networks. Holographic beamforming antennas may be further utilized for discovering and/or addressing nodes in a communication network with steerable, high-directivity beams. Holographic beamforming antennas may be further utilized for extending the range of communications nodes and providing bandwidth assistance to adjacent nodes via dynamic adjacent cell assist. In some approaches, MIMO is used in concert with holographic beamforming for additional channel capacity.
    Type: Application
    Filed: June 15, 2016
    Publication date: December 22, 2016
    Inventors: ERIC J. BLACK, BRIAN MARK DEUTSCH, RUSSELL J. HANNIGAN, ALEXANDER REMLEY KATKO, MELROY MACHADO, JAY HOWARD MCCANDLESS, YAROSLAV A. URZHUMOV
  • Publication number: 20160359235
    Abstract: A holographic radar reflector includes a surface with a plurality of substantially microwave wavelength scale patterns along one or more portions of the surface. The holographic radar reflector can be a non-specular reflector, where the plurality of substantially microwave wavelength scale patterns have varying reflectivity. The holographic radar reflector can reflect electromagnetic radiation emitted from a fixed feed point in varying directions depending on the portion of the surface reflecting the electromagnetic radiation.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 8, 2016
    Applicant: ELWHA LLC
    Inventors: Tom Driscoll, Roderick A. Hyde, Jordin T. Kare, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov
  • Patent number: 9514653
    Abstract: A service unmanned aerial vehicle (UAV) includes a flight system, a status component, a navigation system, and a surveillance component. The flight system is for flying the service UAV. The status component is configured to determine that a first UAV is disabled. The navigation system is configured to fly the service UAV to a landing location of the first UAV in response to the status component determining that the first UAV is disabled. The surveillance component is configured to observe the first UAV and an area surrounding the first UAV.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: December 6, 2016
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Hon Wah Chin, William David Duncan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Yaroslav A. Urzhumov, Thomas Allan Weaver, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20160332742
    Abstract: A fuel tank includes a port and an open-cell foam. The open-cell foam is configured to retain a liquid fuel by an interfacial surface tension between the open-cell foam and the liquid fuel. The open-cell foam is configured to selectively release the liquid fuel when a surfactant is applied to the open-cell foam to reduce the interfacial surface tension between the open-cell foam and the liquid fuel.
    Type: Application
    Filed: May 14, 2015
    Publication date: November 17, 2016
    Applicant: ELWHA LLC
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Hon Wah Chin, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, Nicholas W. Touran, David B. Tuckerman, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20160331460
    Abstract: Embodiments disclosed herein relate to an interactive surgical drape and system including at least one sensor and at least one controller that operates indicating sensing feedback from the at least one sensor to cause display of information on a dynamic display integrated with the interactive surgical drape. The dynamic display assists the surgical team while performing surgery and can operate to improve the efficiency and/or effectiveness of the surgical team.
    Type: Application
    Filed: May 11, 2015
    Publication date: November 17, 2016
    Inventors: Jesse R. Cheatham, III, Joel Cherkis, Paul H. Dietz, Tom Driscoll, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Neil Jordan, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Patrick Neill, Tony S. Pan, Robert C. Petroski, David R. Smith, Elizabeth A. Sweeney, Desney S. Tan, Clarence T. Tegreene, David Lawrence Tennenhouse, Yaroslav A. Urzhumov, Gary Wachowicz, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20160334864
    Abstract: Embodiments disclosed herein relate to an interactive surgical drape and system including at least one sensor and at least one controller that operates indicating sensing feedback from the at least one sensor to cause display of information on a dynamic display integrated with the interactive surgical drape. The dynamic display assists the surgical team while performing surgery and can operate to improve the efficiency and/or effectiveness of the surgical team.
    Type: Application
    Filed: May 11, 2015
    Publication date: November 17, 2016
    Inventors: Jesse R. Cheatham, III, Joel Cherkis, Paul H. Dietz, Tom Driscoll, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Neil Jordan, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Patrick Neill, Tony S. Pan, Robert C. Petroski, David R. Smith, Elizabeth A. Sweeney, Desney S. Tan, Clarence T. Tegreene, David Lawrence Tennenhouse, Yaroslav A. Urzhumov, Gary Wachowicz, Lowell L. Wood, Jr., Victoria Y.H. Wood