Patents by Inventor Yasuaki Hagiwara

Yasuaki Hagiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040054872
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 18, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20040024987
    Abstract: A computer system comprising a microprocessor architecture capable of supporting multiple processors comprising a memory array unit (MAU), an MAU system bus comprising data, address and control signal buses, an I/O bus comprising data, address and control signal buses, a plurality of I/O devices and a plurality of microprocessors. Data transfers between data and instruction caches and I/O devices and a memory and other I/O devices are handled using a switch network port data and instruction cache and I/O interface circuits. Access to the memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes. A test and set bypass circuit is provided for preventing a loss of memory bandwidth due to spin-locking. A content addressable memory (CAM) is used to store the address of the semaphore and is checked by devices attempting to access the memory to determine whether the memory is available before an address is placed on the memory bus.
    Type: Application
    Filed: June 2, 2003
    Publication date: February 5, 2004
    Applicant: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 6647485
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: November 11, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6611908
    Abstract: A memory control unit for controlling access, by one or more devices within a processor, to a memory array unit external to the processor via one or more memory ports of the processor. The memory control unit includes a switch network to transfer data between the one or more devices of the processor and the one or more memory ports of the processor. The memory control unit also includes a switch arbitration unit to arbitrate for the switch network, and a port arbitration unit to arbitrate for the one or more memory ports.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: August 26, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Publication number: 20030079113
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 29, 2002
    Publication date: April 24, 2003
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20030070060
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 30, 2002
    Publication date: April 10, 2003
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20030056087
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 30, 2002
    Publication date: March 20, 2003
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20030056086
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 29, 2002
    Publication date: March 20, 2003
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20020059508
    Abstract: A computer system comprising a microprocessor architecture capable of supporting multiple processors comprising a memory array unit (MAU), an MAU system bus comprising data, address and control signal buses, an I/O bus comprising data, address and control signal buses, a plurality of I/O devices and a plurality of microprocessors. Data transfers between data and instruction caches and I/O devices and a memory and other I/O devices are handled using a switch network port data and instruction cache and I/O interface circuits. Access to the memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes. A test and set bypass circuit is provided for preventing a loss of memory bandwidth due to spin-locking. A content addressable memory (CAM) is used to store the address of the semaphore and is checked by devices attempting to access the memory to determine whether the memory is available before an address is placed on the memory bus.
    Type: Application
    Filed: June 21, 2001
    Publication date: May 16, 2002
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Publication number: 20020029328
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: May 10, 2001
    Publication date: March 7, 2002
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20020016903
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Application
    Filed: May 8, 2001
    Publication date: February 7, 2002
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6282630
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: August 28, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6272619
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: August 7, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6272579
    Abstract: A system and method for transferring data in a multiprocessor architecture capable of supporting multiple processors. The system comprises a priority assignor that provides a dynamic priority to input/output unit (IOU), D-cache and I-cache devices requests as a function of an intrinsic priority assigned to each device and a plurality of factors including the existence of a row match between a requested address and a previously serviced request, the number of times a device has been denied service and the number of times a device has been serviced without interruption. The system also includes a tracker to keep track of the number of times each of the factors occurs and a priority changer to change the priority of the devices as a function of the intrinsic priority and the number.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: August 7, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 6256720
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: July 3, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6219763
    Abstract: A system for transferring data in a microprocessor architecture including a memory array unit (MAU) and multiple devices seeking access to the MAU. The system has a row match circuit for detecting and indicating a row match between successive row addresses. The row match circuit include a latch for storing a previous row address request, and a comparator for comparing a previously latched row address request with a present row address request associated with a specific device of the multiple devices seeking access to the MAU. The comparator asserts a row match signal when the previously latched row address request matches the present row address request. The system further includes an arbiter for controlling priorities associated with the multiple devices seeking access to the MAU.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: April 17, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 6173369
    Abstract: A system and method for processing a sequence of requests for data by one or more central processing units (CPUs) after cache misses. Each CPU request includes a CPU-ID tag identifying the CPU issuing the request for data and an address identifying a location in lower-level memory where the data is stored. Cache-control ID tags are assigned to identify the locations in the request queue of the respective CPU-ID tags associated with each CPU request. Cache-control requests consisting of the cache-control ID tags and the respective address information are sent from the request queue to the lower-level memory or storage devices. Data is then returned along with the corresponding CCU-ID tags in the order in which it is returned by the storage devices. Finally, the sequence of CPU requests for data is fulfilled by returning the data and CPU-ID tag in the order in which the data was returned from lower-level memory.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: January 9, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Yasuaki Hagiwara
  • Patent number: 6128723
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: October 3, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6101594
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: August 8, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6092181
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: July 18, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang